Centre de ressources virtuel des Rivières du Sud
  • Accueil
  • Collections
    • Collections de l'UASZ
    • Collections de Casadoc
    • Parcours Thématiques
  • Dépôts
  • En savoir plus
    • À propos
    • Actualités
    • Accueil
    • Collections
      • Collections de l'UASZ
      • Collections de Casadoc
      • Parcours Thématiques
    • Dépôts
    • En savoir plus
      • À propos
      • Actualités
    • Login
    View Item 
    •   DSpace Home
    • Université Assane Seck de Ziguinchor (UASZ)
    • UFR des Sciences et Technologies (ST)
    • Publications enseignants UFR ST
    • View Item
    •   DSpace Home
    • Université Assane Seck de Ziguinchor (UASZ)
    • UFR des Sciences et Technologies (ST)
    • Publications enseignants UFR ST
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsTitlesAuthorsSubjectsBy Issue Datexmlui.ArtifactBrowser.Navigation.browse_territoireThis CollectionTitlesAuthorsSubjectsBy Issue Datexmlui.ArtifactBrowser.Navigation.browse_territoire

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Dataclassification techniques and system for predicting discharges in the Gambia river basin

    Thumbnail
    View/Open
    27 Faye et al.pdf (812.3Kb)
    Date
    2019
    Author
    Faye, Cheikh
    Sané, Bouly
    Thiaw, Ibrahima
    Wade, Cheikh Tidiane
    Metadata
    Show full item record
    Abstract
    Within the framework of water resources management, numerous research works and methods were led in world. In this trail, we noted a fast development of time series data mining (TSDM) which supplies a new method for water resources management. This article examines the trend of discharge during the high water period (from July till November) in the basin of Gambia measured at the Mako station for 1970-2013 period. Methodology consisted at first in calculation and in standardization of data by the method of z-score of some statistical parameters (mean, maximum, minimum, range and standard deviation). Obtained series were afterward submitted to classifications techniques such as k-means clustering and Agglomerative Hierarchical Clustering (AHC) of TSDM to cluster and discover the discharge patterns in terms of the autoregressive model. Based on these methods, a discharge forecast model has been developed. For the validation of the indicated model, and with respect to the maximum discharge, the coefficients of discharge growth and decay, respectively on the phase of rise and the phases of rise and descent waters, were calculated. This study presents basin discharge dynamics in high water period based on TSDM. Key words: data mining; discharge; forecast model; hydrological process; clustering; techniques
    URI
    http://rivieresdusud.uasz.sn/xmlui/handle/123456789/339
    Collections
    • Publications enseignants UFR ST

    Ce centre de ressources a été réalisé en partenariat avec et financé par:
    Contact Us | Send Feedback
     

    Ce centre de ressources a été réalisé en partenariat avec et financé par:
    Contact Us | Send Feedback