Centre de ressources virtuel des Rivières du Sud
  • Accueil
  • Collections
    • Collections de l'UASZ
    • Collections de Casadoc
    • Parcours Thématiques
  • Dépôts
  • En savoir plus
    • À propos
    • Actualités
    • Accueil
    • Collections
      • Collections de l'UASZ
      • Collections de Casadoc
      • Parcours Thématiques
    • Dépôts
    • En savoir plus
      • À propos
      • Actualités
    • Login
    View Item 
    •   DSpace Home
    • Université Assane Seck de Ziguinchor (UASZ)
    • UFR des Sciences et Technologies (ST)
    • Mémoires UFR ST
    • View Item
    •   DSpace Home
    • Université Assane Seck de Ziguinchor (UASZ)
    • UFR des Sciences et Technologies (ST)
    • Mémoires UFR ST
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsTitlesAuthorsSubjectsBy Issue Datexmlui.ArtifactBrowser.Navigation.browse_territoireThis CollectionTitlesAuthorsSubjectsBy Issue Datexmlui.ArtifactBrowser.Navigation.browse_territoire

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Estimation du paramètre de forme β dans la distribution de Kumaraswamy à l’aide de la méthode du Maximum de Vraisemblance et de la méthode de Bayes

    Thumbnail
    View/Open
    pané_memoire_2024.pdf (1.316Mb)
    Date
    2024
    Author
    Pané, Omar
    Metadata
    Show full item record
    Abstract
    Dans cette étude, notre attention s’est portée sur l’estimation du paramètre de forme β dans le modèle de Kumaraswamy à deux paramètres α et β, en recourant à la méthode du Maximum de Vraisemblance (MV) et à la méthode bayésienne. Une comparaison entre les deux méthodes est effectuée en se basant sur l’Erreur Quadratique Moyenne (EQM) issue de chaque estimateur. Dans la méthode de Bayes, deux fonctions de perte sont utilisées, à savoir la fonction de perte quadratique (SELF) et la Fonction de Perte de Précaution (PLF). Le Risque Postérieur (RP), calculé à partir de ces fonctions de perte, est ensuite comparé. Cette analyse comparative est appliquée spécifiquement aux données hydrologiques, en mettant l’accent sur les réserves d’eau du réservoir Shasta. En conclusion, nous évaluerons l’efficacité des deux méthodes par le biais de simulations réalisées avec le logiciel R.
    URI
    http://rivieresdusud.uasz.sn/xmlui/handle/123456789/2070
    Collections
    • Mémoires UFR ST

    Ce centre de ressources a été réalisé en partenariat avec et financé par:
    Contact Us | Send Feedback
     

    Ce centre de ressources a été réalisé en partenariat avec et financé par:
    Contact Us | Send Feedback