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ABSTRACT
The objective of this study was to investigate the production of activated carbons (AC) from cashew
shells, and millet stalks and their efficiency in fluoride retention. These agricultural residues are
collected from Senegal. It is known that some regions of Senegal, commonly called the groundnut
basin, are affected by a public health problem caused by an excess of fluoride in drinking water used
by these populations. The activated carbons were produced by a combined pyrolysis and activation
with water steam; no other chemical compounds were added. Then, activated carbonaceous materials
obtained from cashew shells and millet stalks were called CS-H2O and MS-H2O respectively. CS-
H2O and MS-H2O show very good adsorbent features, and present carbon content ranges between
71% and 86%. The BET surface areas are 942 m2.g−1 and 1234 m2.g−1 for CS-H2O and MS-H2O
respectively. A third activated carbon produced from food wastes and coagulation-flocculation sludge
(FW/CFS-H2O) was produced in the same conditions. Carbon and calcium content of FW/CFS-
H2O are 32.6 and 39.3% respectively. The kinetics sorption were performed with all these activated
carbons, then the pseudo-first equation was used to describe the kinetics sorption. Fluoride adsorption
isotherms were performed with synthetic and natural water with the best activated carbon from
kinetics sorption, Langmuir and Freundlich models were used to describe the experimental data.
Regarding equilibrium data, the experimental data are better described by Langmuir model than by
the Freundlich model. The results showed that carbonaceous materials obtained from CS-H2O and
MS-H2O were weakly efficient for fluoride removal. With FW/CFS-H2O, the adsorption capacity is
28.48 m2.g−1 with r2 = 0.99 with synthetic water.
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1 INTRODUCTION

In recent years, many studies have been done in order to remove the high concentration of many
contaminants from drinking water such as fluoride, lead, arsenic, copper and nitrate [1]. It is known
that fluoride is an essential element in drinking water. This trace element is actively involved in the
health of teeth, especially in the prevention of dental cavities and plays an important role in bone
strength. However, when the fluoride concentration in drinking water is higher than 1.5 mg.L−1,
it may cause harmful effects on human health namely dental fluorosis and skeletal fluorosis at
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concentrations above 4 mg.L−1 [2, 3]. Fluoride is a very well known toxic contaminate existing in
surface water and groundwater. It is naturally found in groundwater and is also released into the
groundwater from mineral resources such as fluorite and weathering of rocks (e.g., shale, basalt,
granite). Leaching of fluoride in groundwater may be possible if groundwater makes contact regularly
with ores, minerals, and rocks; consequently, high fluoride concentration may yield in groundwater [4-
7]. In the world, it is estimated that more than 200 million people are exposed to drinking water with
a fluoride concentration that exceeds the WHO guideline (1.5 mg.L−1 ) [8]. Many countries around
the world such as India, Bangladesh, Nepal, Senegal, USA, and Mexico are concerned by fluoride
exposure because of the high numbers of their populations that present the effects caused by the
high concentration of fluoride in their drinking water [9-10].

Thus, several processes for fluoride removal have been developed. Some are based on membrane
technologies such as nanofiltration and reverse osmosis [3], while others use adsorption technologies
such as adsorption into clay or activated carbon [11]. Membrane technology is well known for its
effectiveness in fluoride removal, but its high operating cost may remain a problem for developing
countries. Many papers also report the use of the adsorption process to remove fluoride in drinking
water. Activated carbons are widely used as adsorbents for pollutant removal due to their interesting
physical and chemical properties. Moreover, activated carbons could be low-cost materials if produced
from agricultural waste collected freely in the fields. Previous papers studied the efficiency of activated
carbon in fluoride uptake. Consequently, for enhancing the uptake of fluoride by activated carbon
these authors have modified the adsorbent by impregnating it with the calcium solution [12].

The purpose of this study is to produce and characterize low-cost activated carbons and to study
their efficiency in fluoride sorption. The activated carbons were produced from millet stalks,
cashew shells and a mixture of food waste and coagulation-flocculation sludge (FW/CFS). Then
these three carbonaceous materials were used to study fluoride adsorption efficiency. The
Langmuir and Freundlich models were used to describe the isotherms experimental data and the
pseudo first order equation was also used to describe the kinetic data.

2 MATERIALS AND METHODS

2.1 Production of Carbonaceous Materials
Millet stalks and cashew shells named respectively MS and CS, were used as precursors. Millet stalks
were cut into small pieces to facilitate their introduction to the reactor, while cashew shells were left
in their original state. The carbonization (or pyrolysis) was conducted under an inert atmosphere (0.5
L/min of N2) up to 850 ◦C with a temperature ramp of 10 ◦C/min in a batch quartz rotary furnace (HTR
11/150, Carbolite). At 850 ◦C, the step of activation was started with an injection of steam (0.7 mL
of water.min−1) as activating gas for 80 minutes. The cooling of the furnace was still realized under
inert atmosphere. For the FW/CFS, first, pyrolysis char from 50 wt % FW and 50 wt % CFS was
produced in semi-continuous screw reactor by slow pyrolysis (heating rate of 22 ◦C.min−1) at 700 ◦C
during 30 min. The details of the experimental procedure were described in a previous paper [13].
The char was then activated with steam to produce FW/CFS-H2O. The same experimental procedure
as that described above was used for the activation process. AC were washed with deionized water,
and dried at 105 ◦C before being characterized. This method was adapted from the previous work
realized by the research team [14].

2.2 Characterization of Activated Carbon
Elemental analysis of CHNSO was performed using the apparatus Flash EA 1112, Thermofinnigan.
The total ash content and pHPZC (point of zero charge) determination of each activated carbon
were carried out following a methodology previously described [14]. For the pH PZC , 100 mL of
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0.01 mol.L−1 NaCl solution was placed in a closed polyethylene bottle. The pH was adjusted between
2 and 12 by adding HCl or NaOH 0.01 mol.L−1 solution. Then, 0.05 g of each sample was added
in the closed polyethylene bottle that was set stirring for 5 days at the room temperature before
measuring the final pH. Then the final pH was plotted against the initial pH, and the point where this
curve crosses the line pHfinal = pHinitial represents the pHPZC.

The porous properties of activated carbon were deduced from nitrogen adsorption isotherms at 77 K
(ASAP 2020 Micromeritics). The scanning electron microscopy (SEM) was carried out using the
apparatus JOEL JSM 5800LV, allowing the observation of the porous structure of carbonaceous
materials. To determine the presence of the other elements such as iron and calcium quantitative
analysis was performed by using EDX-800HS apparatus.

2.3 Fluoride Adsorption
All the measurements of fluoride concentration were performed by using a UV-1800 spectrophotometer.
Firstly, the suitable wavelength for these measurements was determined. Thus, a solution of 2 mg.L−1

was prepared from an initial fluoride solution of 0.2 g.L−1 prepared by dissolution of NaF in deionized
water (Milli-Q Millipore 18.0 MΩcm−1, resistivity). Then a square cell sample was filled with 2 mg.L−1

of fluoride solution up to the mark before it was placed in the sample holder. From there, the
peak wavelength was determined from the spectrum curve. Thus the maximum wavelength used
in this study was 618.3 nm. Analytical measurements were obtained with a quantification limit of
0.25 mg.L−1 and a detection limit of 0.12 mg.L−1 . The quantification limit is the lowest level that can
be reliably measured.

All three activated carbons were used in the fluoride adsorption in deionized water, before the better
of these adsorbents were used for the isotherm adsorption both in deionized and natural water.

For the sorption kinetic experiments, batch contact time experiments were conducted at 21 ◦C by
stirring 0.8 g of sorbent with 1000 mL of fluoride solution (5 mg.L−1) at 250 rpm. The pH was
measured before adding the sorbent in the polyethylene reactor and measured at the end of kinetic.
Then the equilibrium time between the solid and the solution was determined by plotting the fluoride
concentration versus time. The pseudo first order sorption model proposed by [15] was used to
describe the kinetic curves as indicate by the following equation:

dqt
dt

= k1 (qe − qt) (1)

Where qe and qt are the sorption capacities at equilibrium and at time t respectively (mg.g−1) and k1
is the rate constant of pseudo first order sorption (min−1 ). Then the integration with the conditions
follow, t = 0 to t = t and qt = 0 to qt = qt , the linear form obtained is expressed as follow:

log (qe − qt) = log (qe)−
k1

2.303
t (2)

Th parameters qe and k1 were calculated by plotting log (qe − qt) versus t.

Bath adsorption isotherms were conducted at 21 ◦C with 250 mL of synthetic solution from 3 to
25 mg.L−1 of fluoride and 0.175 g of adsorbent. Then the reactors have been stirred for 120 min
at 250 rpm. The pH was measured before adding the sorbent and at the end of the experiment,
the values ranged between 5 and 9. Langmuir and Freundlich models were used to describe the
experimental data of the isotherms [16, 17]. The Langmuir equation is describes below:

qe =
qmbCe

1 + bCe
(3)
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Where b is the equilibrium constant of the reaction (L.mg−1), qm and Ce are the maximum adsorption
capacity (mg.g−1) and the amount of fluoride at equilibrium (mg.L−1), respectively.
The Freundlich equation is given below:

qe = kfC
n
e (4)

Where Kf (mg.g−1)/(mg.L−1)1/n and n the Freundlich isotherm constant related to the adsorption
capacity. In sorption processes, it is known that the presence of other ions can contribute to a
competitive effect between the ions, leading to a modification of the adsorption capacities. Thus
the isotherm adsorption was performed with natural water, the composition of which is given in Table
1.

Table 1. Mineral content of natural water

Elements Ca2+ Mg2+ Na+ K+ HCO−
3 Cl− SO2−

4 NO−
3

C(mg.L−1) 4.7 1.8 5.9 2.8 40.3 1.2 0.2 0.5

The potential effect of these ions into the adsorption capacity will be discussed below.

3 RESULTS AND DISCUSSIONS

3.1 Characterization of Activated Carbon
The chemical characterization (elemental analysis and pHPZC ) and the physical characterization (BET
surface area analysis) are given in the Table 2. TPV in Table 2 means Total Porous Volume.

Table 2. Properties of activated carbons

Mass fraction /%
Material C H O Ash PHPZC SBET Vmicro Vmeso TPV

/m2.g−1 /cm3.g−1 /cm3.g−1 /cm3.g−1

MS-
H2O

86.0 0.8 12.2 0.1 8.0 1324 0.588 0.033 0.665

CS-H2O 71.0 0.8 21.0 6.5 10.6 942 0.415 0.045 0.504

FW/CFS-
H2O

32.6 0.9 6.6 62.2 9.8 225 0.098 0.036 0.164

As several activated carbons produced at laboratory scale, the major element contents of them are
C, O and H. The carbon percentage showed in Table 1 is 86.0%, 71.0% and 32.6 % for the MS-
H2O, CS-H2O and FW/CFS-H2O respectively. The values of carbon content of MS-H2O and CS-H2O
lead to real carbonaceous materials. In the literature, similar values were obtained during research
activities for the activated carbons production from agricultural wastes [14, 18, 19]. In contrast, the
carbon content of activated carbon from the mixture of food waste and coagulation-flocculation sludge
(FW/CFS-H2O) is low (32.6 %). This carbon content may negatively impact on the BET surface
area. As an identical production method was used, the differences in the properties of the activated
carbons are only assigned to the precursor nature. The second major element of the activated carbon
is oxygen. Its content is 12.2 %, 21.0 % and 6.6 % for the MS-H2O, CS-H2O and FW/CFS-H2O
respectively. These values of oxygen content are close to those obtained by Torres-Perez, Gerente
and Andres, [14] that have characterized two commercial granular activated carbons.

The ash conte ent is 0.1 % an nd 6.5 % for MMS-H2O and CCS-H2O respectively and these values are
close to those obtained in the literature [14]. However, the ash content in FW/CFS-H2O is significantly
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higher: 62.2 %, this value is so high that it can explain the low carbon content of this material.
Generally when an activated carbon presents a low carbon content and a high ash content, its BET
surface area is low. Finally all these carbonaceous materials reveal a basic pHPZC, ranging from 8.0
to 10.6. Thus the surface charge of carbonaceous materials is negative.

As described above, the BET surface area a is performed with ASAP 2020 Micromeritics by nitrogen
adsorption at 77 K. The results are presented in the Table 2. Thus the BET surface area of the MS-
H2O , CS-H2O and FW/CFS-H2O is 1324 m2.g−1 , 942 m2.g−1 and 225 m2.g−1 respectiv vely. For
the MS-H2O and CS-H2O, their high content of carbon and a low ash content probably allow these
carbonaceous materials to develop the BET surface area above 80 00 m2.g−1. During their work in
2012, , Torres-Pérez et al, produced two activated carbons from agricultural wastes, and their BET
surface areas ranged between 821 and 829 9 m2.g−1. Beside the high BET surface area developed
by MS-H2O and d CS-H2O, as expected, the FW/CFS-H2O has the lowest value (21 18 m2.g−1).

With SEM micrograph and EDX spectra of these activated carbons (data not shown) it was possible
to appreciate the difference between the macropores upon the surface of each sample. Then with
the EDX spectra, the high presence of calcium was found in the FW/CFS-H2O with a percentage of
39.3 %.

Concerning the total porous volumes, the values obtained with the MS-H2O, CS-H2O and FW/CFS-
H2O are 0.665 cm3.g−1 , 0.504 cm3.g−1 and 0.164 cm3.g−1 (Table 2). As for the BET surface areas,
the activated carbons from millet stalks and cashew shells present the highest total porous volumes.
However, all these activated carbons have a developed microporous nature. The nitrogen adsorption
isotherms obtained confirm the microporous nature of these activated carbons. MS-H2O and CS-H2O
develop a microporous volume ranging between 0.588 and 0.415 cm3.g−1; for the FW/CFS-H2O, the
microporous volume is 0.098 cm3.g−1. These values of microporous volume obtained in this study
can be compared to data found by Bandosz & Ania, [20]. The mesoporous volumes are 0.033, 0.045
and 0.036 cm3.g−1 for MS-H2O, CS-H2O and FW/CFS-H2O respectively.

3.2 Fluoride Removal with Carbonaceous Materials

3.2.1 Sorption Kinetics

With MS-H2O, CS-H2O and FW/CFS-H2O, batch contact experiments were performed. The kinetics
curves of CS-H2O and FW/CFS-H2O are depicted in Fig. 1. MS-H2O displayed a fluoride uptake
almost null, thus the kinetic curve of this material is not plotted here.

From these kinetic decay curves for moval of fluoride on these activated carbons, the optimal contact
time is determined as 20 min and 2 h for CS-H2O and FW/CFS-H2O respectively. Thus, experimental
adsorption capacity for CS-H2O is 1.61 mg.g−1, while for FW /CFS-H2O, the experimental adsorption
capacity reach 5.29 mg.g−1 at the equilibrium time. Table 3 presents the parameters qe and k1
calculated from linear form of pseudo first order equation by plotting log (qe − qt) versus t.

Fig. 1. Kinetic decay curves for fluoride uptake on CS-H2O and FW/CFS-H2O
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Table 3. Parameters of pseudo first order kinetic model

Material qe,exp(mg.g−1) qe,cal(mg.g−1) k1(min−1) r2

CS-H2O 1.61 0.43 0.1 0.82
FW/CFS-H2O 5.29 8.59 0.063 0.91

The pseudo first order model tested in this study does not describe very well the experimental data
especially for the experimental data obtained with CS-H2O that r2 = 0.82. With its low adsorption
capacity of fluoride this material will not be used for the equilibrium adsorption isotherms. It appears
here that the BET surface area and the carbon content are not decisive factors for the fluoride
adsorption because CS-H2O has the higher BET surface area and carbon content than FW /CFS-
H2O. Furthermore, the experimental fluoride adsorption capacity of 5.29 mg.g−1 is reached and
the pseudo first order des scribe better the experimental data with r2 = 0.91 even if the fluoride
adsorption capacity calculated is overestimate (8.59 mg.g−1). The pseudo first order equation does
not fit well the experimental data of kinetic sorption. Generally, this model is applicable over the initial
20 to 30 min of the kinetic sorption [15, 21, 22].

3.2.2 Adsorption isotherms

Adsorption isotherms were carried out during 2h of contact time between the fluoride solution with
initial concentrations ranging between 3 to 25 mg.L−1 , and pH ranging from 5 to 9. The experimental
data are plotted while the Langmuir and Freundlich equations are used to model the experimental
curve of the fluoride uptake (Fig. 2). The Langmuir isotherm reflects the monolayer adsorption while
the Freundlich isotherm shows the multilayer adsorption.

Fig. 2. Experimental adsorption isotherm of fluoride using the Langmuir and Freundlich
models

From these curves, the Langmuir model fits the experimental data very well with r2 = 0.99 as well
as the Freundlich model (r2 = 0.98). In the Table 4, the modelling parameters of Langmuir and
Freundlich are listed.

Table 4. Isothe erm parameter rs of fluoride a adsorption on FW/FCS-H2O

Langmuir Freundlich
Material qm b r2 kf (mg.g−1)/ n r2

(mg.g−1) (L.mg−1) (mg.L−1)

FW/FCS-H2O 28.48 0.228 0.99 9.995 0.72 0.98
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Concerning the Freundlich model, Kf is found to 9.95 (mg.g−1)/(mg.L−1)1/n with r2 = 0.98 and
n = 0.72. Regarding the Langmuir model, the adsorption capacity qm is 28.48 mg.g−1 and equilibrium
constant of the reaction b = 0.28L.mg−1 . The value of qm calculated from the Langmuir model is
similar to the experimental data which is 28.73 mg.g−1 . This match indicates that a monolayer
adsorption is involved in fluoride sorption and only the interactions between the fluoride species
and the adsorbent surface occur. Despite its low BET surface area and the low carbon content
than CS-H2O, the FW/FCS-H2O can be an alternative and efficient sorbent for fluoride removal from
drinking water. This high adsorption capacity suggests that the high presence of calcium upon the
adsorbent plays a very important role in the uptake of fluoride. These three activated carbons were
produced by adapting the same method and none have been modified. Indeed during their activity
research, Hernández-Montoya et al., [12] used pecan nut shells as precursor for the production of
activated carbon. The ac ctivated carbons were then impregnated with a calcium solution extracted
from egg shells. The calcium content in their activated carbon are ranged between 1.6 and 4.48
%. Using the Langmuir model, the activated carbon with the highest calcium content t reached the
better adsorption capacity with the value of 2.51 mg.g−1 . The BET surface area of this modified
activated carbon is 17 m2g−1 . This adsorption capacity remains significantly l lower than that
obtained in our study with the non-modi ified FW/FCS-H2O (28.48 mg.g−1 ) which naturally contains
calcium species. Sivasankar, Rajkumar, Murugesh, & Darchen, [23] obtained an adsorption capacity
of 22.33 mg.g−1 using the Langmuir model with carbonaceous material from tamarind fruit shell
impregnated in ammonium carbonate solution. The calcium content and BET surface area of this
modified carbonaceous material were 7.2 % and 473 m2.g−1 , respectively. At the present time, many
research activities are being done to remove excess fluoride from drinking water on the adsorbents
and a high adsorption capacity are reached [2, 24, 10].

Fig. 3, depicts the initial concentration of fluoride against the percentage of removal fluoride obtained
with deionized water and natural water.

Fig. 3. Percentage of removal fluoride in synthetic and natural water

Indeed the hypothesis stated above is verified according to the shape of the curves obtained deionized
wat ter (synthetic water in the figure). The presence of other ions promoted a competitive effect
between the fluoride ion ( F− ) and those of natural water (Table 1). It is probably the anions present in
natural water which are responsible for the effect of competition with the fluoride anion. The potential
anions in natural water which can be competitor anion are HCO−

3 , Cl− , SO2−
4 and NO−

3 . Moreover,
a possible attraction could take place between the fluoride anion in solution and calcium cations in
FW/FCS-H2O.

Finally, the results obtained in this study and those reported in the literature have shown the issue
of fluoride worldwide can be solved by using activated carbons produced from various agricultural
residues or waste as adsorbents.
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4 CONCLUSION

In the present study, three activated carbons were prepared from millet stalks (MS-H2O), cas shew
shells (CS-H2O), food wastes and coagulation-flocculation sludge (FW/CFS-H2O). The MS-H2O and
CS-H2O have developed a great chemical and physical characteristic properties. Then they were
studied as sorbents for fluoride removal from drinking water. Only FW/CFS-H2O had shown a great
potential for fluoride removal with percentages above 70 and 80 % with natural and synthetic water
respectively. From kinetic sorption, the equilibrium time is 2h and the pseudo first order does not
fit the experimental data very well. Regarding equilibrium data, the experimental data are better
described by Langmuir model than by the Freundlich model. A high adsorption capacity is provided
by Langmuir in deionized water (28.48 mg.g−1 ) . With an initial fluoride concentration of 7 mg.L−1

, the remaining fluoride concentration measured after 2h equilibrium time with FW/CFS-H2O is 1.4
mg.L−1 . The limit established by the WHO is 1.5 mg.L−1 for drinking water. Generally, the drinking
water which presents excess fluoride concentration ranges between 3 and 8 mg.L−1 . That means
FW/CFS-H2O can be used in water treatment especially for fluoride removal.
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