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" Souviens-toi de tout le chemin
que l’Eternel, ton Dieu,

t’a fait faire· · ·"
(Deutéronome 8:2).

Se souvenir · · ·
pour mieux vivre le présent

et envisager l’avenir.
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ABSTRACT (Résumé)

Dans cette thèse, nous nous sommes intéressés aux groupes de Brauer de certaines catégories
monoïdales tressées et à établir des liens entre eux. Ainsi, après avoir énoncé les généralités
sur les algèbres de Hopf et sur les notions de catégories dans le chapitre 1 de ce manuscrit,
nous avons défini dans le chapitre 2, la notion de groupe de Brauer-Clifford pour la catégorie
des (S,H)-dimodules dyslectiques, où H est une algèbre de Hopf commutative et cocommuta-
tive et S une algèbre de H-dimodule H-commutative sur un anneau commutatif R. Ce groupe
de Brauer est un exemple de groupe de Brauer dans une catégorie monoïdale tressée. Nous
avons également montré que ce groupe de Brauer est anti-isomorphe au groupe de Brauer de
la catégorie des (Sop,H)-modules de Hopf-Yetter-Drinfel’d dyslectiques defini par Guédénon et
Herman (cf. [32]). Pour une algèbre de Hopf H commutative, cocommutative, projective de
type fini comme un R-module, Tilborghs dans [58], a établi un anti-isomorphisme de groupes
entre le groupe de Brauer BD(R,H) des H-dimodules et le groupe de Brauer BD(R,H∗) des
H∗-dimodules, où H∗ est le dual linéaire de H. Nous avons généralisé dans le chapitre 3 ce ré-
sultat en établissant un anti-isomorphisme de groupes entre BD(S,H), le groupe de Brauer
des algèbres de (S,H)-dimodules dyslectiques et BD(Sop,H∗), le groupe de Brauer des al-
gèbres (Sop,H∗)-dimodules dyslectiques, où S est une algèbre de H-dimodule H-commutative
et Sop est l’algèbre opposée de S. Le chapitre 4 est consacré à la généralisation de la suite
de Rosenberg-Zelinsky aux algèbres d’Azumaya des (S,H)-modules de Hopf-Yetter-Drinfel’d
dyslectiques dont les termes sont le groupe des automorphismes des S-algèbres H-inner (H-
INNER) d’une algèbre A ∈ D ys-SQH et le groupe des classes d’isomorphismes des S-modules
inversibles ((S,H)-modules de Hopf-Yetter-Drinfeld dyslectiques inversibles) sous le produit
tensoriel ⊗̃S noté Pic(S) (PQH(S,H)). Lorsque H est une algèbre de Hopf commutative
cocommutative, nous avons aussi établi la suite exacte de Rosenberg-Zelinsky des algèbres
d’Azumaya des (S,H)-dimodules dyslectiques.
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INTRODUCTION

This thesis is motivated by the importance of Hopf algebras (for a historical overview of Hopf
algebras, see [3]) in the theory of "integrals" (Hopf modules [56, Sect. 4.1], Hopf-Galois theory
[19], relative Hopf modules [57]), in the theory of Brauer groups (Long dimodules [40]), in the
theory of quantum groups (Yetter-Drinfeld modules [62]) and in the theory of invariants (Hopf
superalgebras which generalize the supergroup notion), · · · But we have particularly focused
on the study of Brauer groups in some braided monoidal categories.
In 1929, Richard Brauer (1901-1977) defined a group that classifies central simple algebras
over a given field. Let k be a field. A k-algebra A is said to be central simple if it is simple (it
has non-zero ideals) and central (its center is Z(A) = {x ∈ A; x.a = a.x,∀a ∈ A} is isomorphic to
k). For example, an Azumaya k-algebra is a finite-dimentional central simple algebra. Every
field k is central simple over itself. The quaternions ring H, introduced by William Hamilton
(1805-1865) is a central simple algebra of rank 4 over R. The field C, of complex numbers, is
not central simple because R is not its center.
The algebra Mn(k), of n× n ( n ∈ N∗) matrices with entries in a field k, is an Azumaya k-
algebra. If a k-algebra is an Azumaya k-algebra, so is its opposite algebra Aop and there is an
isomorphism of algebras

A⊗ Aop → End(A), (a⊗b)(x) 7→ axb,

where ⊗ denotes the tensor product over R and End(A) the algebra of R-endomorphisms of A.
According to R. Brauer in his study of division rings, there is an equivalence relation on the
set of Azumaya algebras. Two Azumaya k-algebras A and B are equivalent (or similar), and
we write A ∼ B, if there exist two non-zero integers m and n such that

A⊗Mn(k)∼= B⊗Mm(k)

an isomorphism of k-algebras. The equivalence class of an Azumaya k-algebra A is denoted by
[A]. The set of equivalence classes of Azumaya k-algebras induced by the relation " ∼ " with
the operation

[A].[B]= [A⊗B]

is a group for which the unit element is [k] and the inverse of the class [A] is the class [Aop].
This group is denoted by Br(k) and it is called the Brauer group of k.

The concept of Brauer group of a field was generalized, over time, to various contexts. The
Brauer group for a commutative ring was defined by Auslander and Goldman [6] and for a
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ringed space by Auslander [5]. Grothendieck [26] defined the notion of a bundle of Azumaya
algebra for a k-scheme V and constructed the Brauer group of V , denoted today as BrAz(V ).

Knus [38] and Childs, Garfinkel and Orzech [20] considered algebras graded by an arbi-
trary finite abelian group G. They introduced a Brauer group of graded Azumaya algebras,
Bφ(R,G), for G a finite abelian group, R a commutative ring with units group U(R), and
φ : G ×G → U(R) a fixed bimultiplicative map. When G = C2, the cyclic group of order 2,
and φ is nontrivial, Bφ(R,G) is the Brauer-Wall group introduced by Wall [61]. Another gener-
alization of the Brauer group was developed by Fröhlich and Wall [25]. This is the equivariant
Brauer group which involves algebras on which a group acts.

In [41], Long introduced BD(R,G), the Brauer group of algebras graded by an arbitrary
group G and also acted on by G so that the action preserves the grading. Then, Long computed
BD(R,G) for a cyclic group of prime order over an algebraically closed field. In [40], he further
extended this to BD(R,H) where H is an arbitrary commutative and cocommutative Hopf
algebra over a commutative ring R. This coincides with the former Brauer group in [41] if
we let H = R[G], the group algebra of G over R. BD(R,H) is called the Brauer group of H-
dimodule algebras or the Brauer-Long group: it consists of equivalence classes of H-Azumaya
algebras.

An important step in this sequence of extensions was made by B. Pareigis who, in 1975,
defined the Brauer group of a symmetric monoidal category [47]. After, A. Joyal and R. Street
introduced, in 1993, the concept of a braided monoidal category [36], F. Van Oystaeyen and
Y. Zhang extended, in 1998, Pareigis’ definition of the Brauer group [59] to such categories de-
noted Br(C ), where C is a Braided monoidal category. Before that, the authors with Caenepeel
[17] introduced in 1997, Br(HY DH) the Brauer group of the category HY DH of Yetter-Drinfeld
modules over a Hopf k-algebra H. It is denoted BQ(k,H) and it is called the full Brauer group
of H. It is this generalization of [59] that we need here, since the category of dyslectic dimod-
ules is braided, not symmetric in general.
Let H be a commutative cocommutative Hopf algebra over a commutative ring R. The category
DH of H-dimodules is a braided monoidal category, so one can consider (commutative) algebras
in it. These algebras are termed (quantum commutative) H-dimodule algebras. Let S be such
a quantum commutative H-dimodule algebra. An (S,H)-dimodule is an H-dimodule with a left
S-action satisfying some compatibility conditions. We can consider the category SDH of (S,H)-
dimodules. Using the braiding on DH , the left S-action on an (S,H)-dimodule M can be used to
define a right S-action on it, making M an S-bimodule. Then the tensor product M⊗S N of two
(S,H)-dimodules M and N is again an (S,H)-dimodule, see [33, Lemma 3.1]. Thus we obtain
a monoidal category (SDH ,⊗S,S). This category is not braided; the reason is that the braiding
map γM,N : M⊗N → N ⊗M does not induce a well-defined map γM,N : M⊗S N → N ⊗S M. How-
ever, if M and N are dyslectic, then there is no problem. Actually this is how the definition of
dyslexia modules was designed by Pareigis in [50]. The full subcategory D ys-SDH of SDH con-
sisting of dyslectic (S,H)-dimodules is a braided monoidal category. There are some additional
properties making the category closed, see the Lemmas in [33, Sect. 4]. With these properties,
according to [59], we can define the Brauer group of the category of dyslectic (S,H)-dimodules
Br(D ys-SDH) denoted by BD(S,H). For more recent versions of the Brauer group, see [32],
[34],[27], [55], [35], [28],[29], [30], [53], [11],· · · The list is not exhaustive.

Brauer groups in some braided monoidal categories C. L. NANGO ©UASZ/UFR-ST/LMA/Hopf Algebra, 2021
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The content of this thesis is divided into four chapters. In Chapter 1 we give the generali-
ties on Hopf algebras, monoidal categories, symmetric monoidal categories, braided monoidal
categories and their functors which we use to establish some of our results. The Chapter
2 is the subject of an article [33] entitled "A Brauer-Clifford-Long group for the category of
dyslectic (S,H)-dimodule algebras." In this one, we considered the monoidal category SDH of
(S,H)-dimodules, where S is a H-dimodule algebra H-commutative according to the braiding
of dimodules. As this category being neither symmetric nor braided, the notion of dyslexia
([50]) is used to make it monoidal braided. This gives us the theorem:

Theorem 0.0.1. [33, Theorem 4.4]
The category (D ys-SDH ,⊗̃S,S,γ) of dyslectic (S,H)-dimodules is a braided monoidal category.

We define the Azumaya algebras in the category (D ys-SDH ,⊗̃S,S,γ) and obtain the main
result of this chapter:

Theorem 0.0.2. [33, Theorem 6.5]
Let H be a commutative and cocommutative Hopf algebra and S an H-commutative H-dimodule
algebra. Then BD(S,H) is a group. If [A] and [B] denote the equivalence classes of dyslectic
(S,H)-dimodules Azumaya algebras A and B, then in BD(S,H), we will have [A] . [B]= [A#SB] .
The identity of BD(S,H) is the equivalence class [S] consisting of all trivial dyslectic (S,H)-
dimodules Azumaya algebras, and [A]−1 = [

Ā
]
, for all [A] ∈ BD(S,H).

This group generalizes the Brauer group BD(R,H) defined by Long in [40]. In 2018,
Guédénon and Herman in [32] introduced the category dyslectic Hopf Yetter-Drinfel’d (S,H)-
modules denoted D ys-SQH and its Brauer group BQ(S,H) called Brauer-Clifford group. In
this chapter, we establish a link between the groups BD(S,H) and BQ(T,H) as follows:

Theorem 0.0.3. [33, Theorem 8.7]
Let H be a Hopf algebra and S be an H-commutative H-dimodule algebra. There is an anti-
isomorphism of groups

χ : BD(S,H)→ BQ(Sop,H) given by χ([A])= [[
Aop]]

,

where [[Aop]] represents the class of Aop in BQ(Sop,H).

In Chapter 3 (which is an article [46], accepted for publication in Beiträge zur Algebra und
Geometrie), we consider a commutative cocommutative Hopf algebra H which is finitely gen-
erated projective over a commutative ring R. If so, the dual of H , H∗ is also a commutative
and cocommutative Hopf algebra. We show that if an R-module S is an H-commutative H-
dimodule algebra then, its natural opposite algebra Sop is an H∗-commutative H∗-dimodule.
This leads us to deduce the braided monoidal category (D ys-SopDH∗

,⊗̃Sop ,Sop,γ∗) of dyslec-
tic (Sop,H∗)-dimodule algebras and its Brauer group BD(Sop,H∗). In this chapter, we have
generalized Tilborghs’ result [58] by the theorem:

Theorem 0.0.4. The functor

(F ,ϕ0 ,ϕ2) : D ys-SDH-rev → D ys-SopDH∗

Brauer groups in some braided monoidal categories C. L. NANGO ©UASZ/UFR-ST/LMA/Hopf Algebra, 2021
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is an isomorphism of braided monoidal categories. Consequently

BD(S,H)op ∼= BD(Sop,H∗),

as isomorphism of groups. This means that BD(S,H) and BD(Sop,H∗) are anti-isomorphic
Brauer-Clifford-Long groups.

The Chapter 4 of this thesis is devoted to the Rosenberg-Zelinsky exact sequence which
links the Picard group to the classes of automorphisms of Azumaya algebras for the categories
D ys-SQH and D ys-SDH separately. These sequences are defined as follows.

Theorem 0.0.5. Let A be a dyslectic Hopf Yetter-Drinfeld (S,H)-module Azumaya algebra.
Then there are exact sequences of groups

1→ H-Inn(A)→ H-AutS(A) Ψ→ Pic(S) (0.0.1)

and
1→ H-INN(A)→ H-AutS(A) Φ→ PQH(S,H). (0.0.2)

The homomorphismsΨ andΦ are respectively defined byΨ(α)= [GH(1 Aα)] andΦ(α)= {GH(1 Aα)},
for every α ∈ H-AutS(A), where GH is the inverse of the equivalence functor FH : N → A⊗S N.

Theorem 0.0.6. Let A be a dyslectic (S,H)-dimodule Azumaya algebra. Then there are exact
sequences of groups

1→ H-Inn(A)→ H-AutS(A) Ψ
′

→ Pic(S) (0.0.3)

and
1→ H-INN(A)→ H-AutS(A) Φ

′
→ PDH(S,H). (0.0.4)

The homomorphisms Ψ′ and Φ′ are respectively defined by Ψ′(α) = [[GH(1 Aα)]] and Φ′(α) =
{{GH(1 Aα)}}, for every α ∈ H-AutS(A), where GH is the inverse of the equivalence functor FH :
N → A⊗S N.

Brauer groups in some braided monoidal categories C. L. NANGO ©UASZ/UFR-ST/LMA/Hopf Algebra, 2021



Chapter 1

GENERALITIES ON HOPF ALGEBRAS

In all this text, R is a commutative ring, the unspecified tensor product is on R and all maps
are R-linear (unless specified).

1.1 Coalgebras

Definition 1.1.1. An R-algebra A = (A,mA,µA) is a triplet where A is an R-module and the
maps mA : A⊗ A → A;a⊗a′ 7→ a.a′ = aa′ and µA : R → A;λ 7→ λ1A are R-linear maps such that
the following diagrams are commutative:

• the associativity

A⊗ A⊗ A

mA⊗idA

��

idA⊗mA // A⊗ A

mA

��
A⊗ A mA

// A

• the unity
A⊗ A

mA

��

R⊗ A

µA⊗idA
::

idA $$

A⊗R

idAzz

idA⊗µA
dd

A

The map mA is called the product or multiplication, the map µA is the unity map and µA(1R)
is the unit element of A.

Let (A,mA,µA) be an R-algebra. We set Aop = (A,mop
A ,µA), where mop

A = τ ◦ mA and τ :
A ⊗ A′ → A′ ⊗ A denotes the flip map τ(a⊗ a′) = a′ ⊗ a. Then Aop is an algebra, called the
opposite algebra of A. An algebra (A,mA,µA) is said to be commutative if mA = mop

A .

5



CHAPTER 1. GENERALITIES ON HOPF ALGEBRAS 6

Definition 1.1.2. A morphism of R-algebras is a map f : A → A′ such that the following dia-
grams are commutative:

A⊗ A
mA //

f⊗ f

��

A

f

��

A

µA

��

f // A′;

µA′

��
A′⊗ A′

mA′
// A′ R

A coalgebra is the dual notion of algebra. It is defined by reversing the arrows in the
definition of algebra.

Definition 1.1.3. A co-algebra (or coalgebra) C is a triplet (C,∆C,εC); where C is an R-module,
∆C : C −→ C ⊗C and εC : C −→ R are R-linear maps such that the following diagrams are
commutative:

C⊗C⊗C C⊗C
idC⊗∆Coo C⊗C

εC⊗idC

zz

idC⊗εC

$$
R⊗C C⊗R;

C⊗C

∆C⊗idC

OO

C
∆C

oo

∆C

OO

C
idC

dd ∆C

OO

idC

::

which translates to:

• the co-associativity:
(∆C ⊗ idC)◦∆C = (idC ⊗∆C)◦∆C,

• the co-unity:
(idC ⊗εC)◦∆C = (εC ⊗ idC)◦∆C.

The map ∆C is called the co-multiplication or the co-product of C and the map εC is called the
co-unit of C.

Sweedler notations [56]:
Let C = (C,∆C,εC) be a coalgebra. An element of C⊗C is of the form

∑n
i=1 ci⊗di. For uniformity

of writing and by convention, we use the Sweedler-Heyneman notation: let c ∈ C, we denote

∆C(c)=∑
c(1) ⊗ c(2) =

∑
c1 ⊗ c2 = c(1) ⊗ c(2) = c1 ⊗ c2.

Sweedler-Heyneman (or Sweedler) notations are very useful for doing calculations in coalge-
bras. In the rest of this work, we will use the notation ∆C(c) = c1 ⊗ c2. With this notation, the
axiom of co-associativity is translated as:

∆C(c1)⊗ c2 = c1 ⊗∆C(c2);
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that is,
c11 ⊗ c12 ⊗ c2 = c1 ⊗ c21 ⊗ c22 = c1 ⊗ c2 ⊗ c3, ∀c ∈ C.

The axiom of co-unity translates into:

εC(c1)c2 = c = c1εC(c2), ∀c ∈ C.

Let (C,∆C,εC) be a coalgebra. We set Ccop = (C,∆op
C ,εC), where ∆op

C = τ ◦∆C. Ccop is a
coalgebra called the co-oppisite coalgebra of C. A coalgebra C is said to be cocommutative if
∆C =∆op

C .

Definition 1.1.4. Let C = (C,∆C,εC) and D = (D,∆D ,εD) be two coalgebras.
We define two R-linear maps ∆C⊗D : C⊗D −→ C⊗D⊗C⊗D and
εC⊗D : C⊗D −→ R given by:

∆C⊗D = (idC ⊗τC⊗D ⊗ idD)◦ (∆C ⊗∆D) and εC⊗D = εC ⊗εD .

In other words we have:

∆C⊗D(c⊗d)= c1 ⊗d1 ⊗ c2 ⊗d2 and εC⊗D (c⊗d)= εC(c)εD(d),

where ∆C(c)= c1 ⊗ c2, ∆D(d)= d1 ⊗d2.

Proposition 1.1.5. The triplet (C⊗D,∆C⊗D ,εC⊗D ) defined above is a coalgebra called the tensor
product of coalgebras C and D.

Definition 1.1.6. Let C and D be two coalgebras. An R-linear map f : C −→ D is a morphism
of coalgebras if the following diagrams

C
∆C //

f

��

C⊗C

f⊗ f

��

C
f //

εC

��

D;

εD

��
D

∆D
// D⊗D R

are commutative. That is: ( f ⊗ f )◦∆C =∆D ◦ f and εD ◦ f = εC, in other words

f (c)1 ⊗ f (c)2 = f (c1)⊗ f (c2) and εD( f (c))= εC(c) ∀c ∈ C.

Remark 1.1.7. 1. Let (A,mA,µA) be a finite dimensional algebra, then its dual A∗ is a
coalgebra with comultiplication

∆A∗ : A∗ m∗
A // (A⊗ A)∗

∼= // A∗⊗ A∗

and counity εA∗ =µ∗A.
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2. Let (C,∆C,εC) be a coalgebra not necessarily of finite dimension. Its dual C∗ is an algebra
with product

mC∗ : C∗⊗C∗ ∼= // (C⊗C)∗
∆∗

C // C∗

and the unity is µC∗ = ε∗C.

Proposition 1.1.8. [22, Proposition 4.1.1] Let (B,mB,µB) be an algebra and B = (B,∆B,εB) be
a coalgebra. The following assertions are equivalent:

1. The maps mB and µB are morphisms of coalgebras.

2. The maps ∆B and εB are morphisms of algebras.

Definition 1.1.9. A bialgebra B is a quintuplet (B,mB,µB,∆B,εB) such that (B,mB,µB) is an
algebra, B = (B,∆B,εB) is a coalgebra and the maps ∆B and εB are morphisms of algebras (or
equiventely the maps mB and µB are morphisms of coalgebras).
A bialgebra morphism f : B → B′ is a linear map which is both a morphism of algebras and
cogrebras.

Definition 1.1.10. Let B be a bialgebra. We say that a nonzero element x of B is a group-like
element if:

∆B(x)= x and εB(x)= 1R .

We say that an element x of B is a (g,h)-primitive element if:

∆B(x)= g⊗ x+ x⊗h and εB(x)= 0

where g and h are group-like elements of B. An element x of a bialgebra B is said to be a
primitive element if:

∆B(x)= x⊗1B +1B ⊗ x and εB(x)= 0.

Remark 1.1.11. 1. If (B,mB,µB,∆B,εB) is a bialgebra, then Bop = (B,mop
B ,µB,∆B,εB), Bcop =

(B,mB,µB,∆op
B ,εB) and Bop,cop = (B,mop

B ,µB,∆op
B ,εB) are bialgebras.

2. If B is a finite dimentional bialgebra, then its dual B∗ = (B∗,mB∗ ,µB∗ ,∆B∗ ,εB∗) is a
bialgebra (cf. [22, Proposition 4.1.6])

1.2 Hopf algebras

Let (A,mA,µA) be an algebra and (C,∆C,εC) a coalgebra. Let HomR(C, A) be the set of R-linear
maps from C to A.
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Definition 1.2.1. Let f , g ∈ HomR(C, A). The convolution is defined by :

f ∗ g = mA ◦ ( f ⊗ g)◦∆C;

which translates into the commutativity of the diagram:

C⊗C
f⊗g // A⊗ A

mA

��
C

∆C

OO

f ∗g
// A

In other words, with the Sweedler notation, for all c ∈ C we have:

( f ∗ g)(c)= f (c1)g(c2).

This product is called the convolution product.

Proposition 1.2.2. Let (A,mA,µA) be an algebra and (C,∆C,εC) be a coalgebra. (HomR(C, A);∗)
is a unitary algebra of unit element µA◦εC. In particular, the dual C∗ = HomR(C,R) of C is a
unitary algebra of unit element µR◦εC = εC.

Definition 1.2.3. Let H = (H,mH ,µH ,∆H ,εH) be a bialgebra. Let EndR(H) be the set of endo-
morphisms of H. Its unit element is µH ◦εH . The unique inverse of idH (if it exists) in EndR(H),
called the antipode of H is the map SH : H → H. So SH ∈ EndR(H) and

SH ∗ idH =µH ◦εH = idH ∗SH .

Definition 1.2.4. A Hopf algebra is a sextuplet H = (H,mH ,µH ,∆H ,εH ,SH), where (H,mH ,µH ,∆H ,εH)
is a bialgebra and SH : H → H is a linear map, called the antipode (or the coinverse) of H,
such that the following diagram is commutative:

H⊗H
SH⊗idH // H⊗H

mH

##
H

∆H
;;

εH //

∆H ##

R
µH // H

H⊗H
idH⊗SH

// H⊗H
mH

;;

This means that,

mH ◦ (SH ⊗ idH)◦∆H =µH ◦εH = mH ◦ (idH ⊗SH)◦∆H .

With Sweedler’s notations, it is equivalent to:

SH(h1)h2 = εH(h)1H = h1SH(h2) ∀h ∈ H. (1.2.1)

The formula (1.2.1) is called the antipode formula.
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Theorem 1.2.5. (The properties of the antipode)
Let H be a Hopf algebra with antipode SH :

i) SH : H → Hop is an algebras homomorphism:

SH(gh)= SH(h)SH(g), SH(1H)= 1H ∀h, g ∈ H. (1.2.2)

ii) SH : H → Hcop is a coalgebras homomorphism:

∆H(SH(h))= SH(h2)⊗SH(h1), εH(SH(h))= εH(h) ∀h ∈ H. (1.2.3)

iii) If H is commutative or cocommutative, then S2
H = idH , that is, S−1

H = SH .

Corollary 1.2.6. Let (H,mH ,µH ,∆H ,εH ,SH) be a Hopf algebra with a bijective antipode. Then

Hop = (H,mop
H ,µH ,∆H ,εH ,S−1

H )

is a Hopf algebra.

Proposition 1.2.7. Let H and H′ be Hopf algebras with antipodes SH and SH′ respectively.
The tensor product H⊗H′ is a Hopf algebra with antipode SH⊗H′ = SH ⊗SH′ .

Lemma 1.2.8. Let H = (H,mH ,µH ,∆H ,εH ,SH) be a Hopf algebra with bijective antipode SH .
Then,

S−1
H (h2)h1 = εH(h)1H = h2S−1

H (h1), ∀h ∈ H.

Definition 1.2.9. Let H and H′ be two Hopf algebras with antipodes SH and SH′ respectively.
An R-linear map f : H −→ H′ is a morphism of Hopf algebras if f is a morphism of algebras, a
morphism of coalgebras such that:

SH′ ◦ f = f ◦SH .

Theorem 1.2.10. (Dual of a Hopf algebra)
Let H = (H,mH ,µH ,∆H ,εH ,SH) be a finite dimensional Hopf algebra. Then its dual

H∗ = (H∗,mH∗ ,µH∗ ,∆H∗ ,εH∗ ,SH∗)

is a Hopf algebra with antipode SH∗ = S∗
H given by:

SH∗( f )= f ◦SH , ∀ f ∈ H∗.

Definition 1.2.11. (H-invariant elements)
Let H be a Hopf algebra and let M be a left H-module. An element m of M is called H-invariant
if:

h.m = εH(h)m, ∀h ∈ H.

The set of H-invariant elements of M is denoted by MH . Therefore

MH = {m ∈ M,h.m = εH(h)m, ∀h ∈ H}.

An R-module M is a trivial H-module if:

h.m = εH(h)m, ∀m ∈ M,h ∈ H.

Therefore MH is a trivial left H-module. Moreover MH is a sub-R-module of M.
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1.3 Some elementary examples of Hopf algebra

Let k be a field.

Example 1.3.1. The algebra kG [1, Example 2.7]
Let G be a group. We consider the algebra kG of the group G on k, which is a k-vector space
with basis G. Then kG = (kG,m,µ,∆,ε,S) is a Hopf algebra where:

• the product
m : kG⊗kG →kG; (x, y) 7→ xy,

• the unit
µ : k→kG; λ 7→λ1G ,

• the coproduct
∆ : kG →kG⊗kG; x 7→ x⊗ x,

• the counit
ε : kG →G; x 7→ 1

• and the antipode
S : kG →kG, x 7→ x−1.

Since ∆(x)= x⊗ x, then kG is a cocommutative Hopf algebra. It is commutative if and only if G
is an abelian group. The set of group-like elements of kG is G.

Example 1.3.2. The algebra kG

Let G be again a multiplicative finite group. Let us consider the k-algebra kG of the maps G →k.
As a k-vector space, a basis of kG is formed by δg (g ∈G), with the Kronecker symbol

δg(g′)=
{

1 if g′ = g

0 if g′ 6= g.

We define the product m by
m(δg ⊗δg′)= δgδg′ .

Thus the product m is commutative and m(δg ⊗δg)= δg for g ∈G. the unit

µ : k→kG sends 1 to
∑
g∈G

δg.

The coproduct ∆ : kG →kG ⊗kG and the counit ε : kG →k are defined by:

∆(δg)= ∑
g′g′′=g

δg′ ⊗δg′′ and ε(δg)= δg(1G).

This coproduct is cocommutative if and only if the group G is commutative. The antipode
S : kG →kG is given by

S(δg)= δ
g−1 .

With these maps, kG is a Hopf algebra.
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Remark 1.3.3. • We can identify kG ⊗kG with kG×G when we set:

δg ⊗δg′ = δ(g,g′).

• The Hopf algebras kG and kG are dual of each other: a non-degenerate mating is given
by

kG×kG →k; (g1,δg2) 7→ δg2(g1).

The basis G of kG is dual to the basis (δg)g∈G of kG .

Example 1.3.4. The algebra U(g) [1, Example 2.8]
Let g be a Lie algebra with a law classically denoted by the bracket [., .]. We denote by U(g)
its universal enveloping algebra, which is the quotient T(g)/I of the tensorial algebra T(g) of g
by the two-sided ideal I generated by the elements of the form XY −Y X − [X ,Y ]. We define a
coproduct ∆, a counit ε and an antipode SH over U(g) by the relations:

∆(x)= x⊗1+1⊗ x, ε(x)= 0 and S(x)=−x

for x ∈ g. Thus U(g) is a cocommutative Hopf algebra. The set of primitive elements of U(g) is
nothing else g.

Example 1.3.5. The algebra ℜ(G)
Let G be a compact topological group over C. We denote by ℜ(G) the set of continuous maps f :
G →C such that, with t describing G, the translates f t : x 7→ f (tx) generate a finite-dimensional
vector space. We define a coproduct ∆, a counit ε and an antipode SH over ℜ(G) by the relations:

∆ f (x, y)= f (xy) ε( f )= f (1) and S f (x)= f (x−1),

for all x, y ∈G. Therefore ℜ(G) is a commutative Hopf algebra.

Example 1.3.6. The algebra k(G) [43, Example 2.1]
Let G be a finite group with identity e. Let us denote by k(G) the algebra of functions f : G → k
with the product

( f g)(x)= f (x)g(x); ∀x ∈G and f , g ∈k(G).

k(G) is a Hopf algebra called the group function Hopf algebra, its coproduct is

∆ : k(G)→k(G)⊗k(G)∼=k(G×G); (∆ f )(x, y)= f (xy)

its counit is
ε : k(G)→k; ε( f )= f (e)

and its antipode is
S : k(G)→k(G); (S f )(x)= f (x−1).

Example 1.3.7. The algebra k[SL2] [43, Example 2.2]
The Hopf algebra k[SL2] is k[a,b, c,d] modulo the relation

det(M)= 1, where we set M =
(
a b
c d

)
and I2 =

(
1 0
0 1

)
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The coproduct, counit and antipode are

∆(a)= a⊗a+b⊗ c, ∆(b)= b⊗d+a⊗b, ∆(c)= c⊗a+d⊗ c, ∆(d)= d⊗d+ c⊗b

ε(a)= ε(d)= 1, ε(b)= ε(c)= 0

S(a)= d, S(b)= c, S(c)= b, S(d)= a

∆(M)= M⊗M, ε(M)= I2 and S(M)= M−1;

where matrix multiplication should be understood in this definition of A.

1.4 Modules

Definition 1.4.1. Let A be an R-algebra. An R-module M is a left A-module if there is an
R-linear map:

λM : A⊗M −→ M
a⊗m 7−→ a.m = am, ∀a ∈ A,m ∈ M

such that the following diagrams are commutative

A⊗ A⊗M

mA⊗idM

��

idA⊗λM // A⊗M

λM

��

K⊗M

≈

��

µA⊗idM // A⊗M

λM

��
A⊗M

λM

// M M

that is, for the rectangle: (ab)m = a(bm) and for the triangle: 1Am = m, for all a,b ∈ A,m ∈ M.
The map λM is called the left A-action on M. It is also denoted in this manuscrit by * .

We denote by AM (or MA) the category of left (or right) A-modules. Its objects are the left
(or right) A-modules and homomorphisms are the left (or right) A-modules homomorphisms.

Definition 1.4.2. Let A un an algebra and M and N two left A-modules. An A-module hoho-
morphism f : M → N is an R-linear map which makes commutative the following diagram:

M
f // N

A⊗M

λM

OO

idA⊗ f
// A⊗N,

λN

OO

This means that f ◦λM =λN ◦ (idA ⊗ f ). In other words, for a ∈ A and m ∈ M, a map f is said to
be an A-modules homomorphism if

f (am)= af (m).
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Definition 1.4.3. (Bimodule)
Let A and B be two R-algebras. An R-module M is said to be an (A-B)-bimodule and denoted
by A MB, if M is a left A-module and a right B-module, and the two multiplications are related
by an associative law (or the compatibility):

(am)b = a(mb), ∀a ∈ A,b ∈ B,m ∈ M.

Example 1.4.4. 1. Every algebra A is an (A-A)-bimodule, the compatibility is just the as-
sociativity of multiplication in A. More generally, if B ⊆ A is a sub-algebra, then A is an
(A-B)-bimodule.

2. If A is commutative, then every left (or right) A-module is an (A-A)-bimodule.

Definition 1.4.5. (Finitely generated R-module)
A finitely generated R-module M is an R-module that has a finite generating set. A finitely
generated module over a ring R may also be called a finite R-module, finite over R, or an R-
module of finite type. That is, there exist

m1,m2,m3, · · · ,ml ∈ M such that M =
l∑

i=1
Rmi.

Definition 1.4.6. (Free R-module)
A left R-module M is said to be left free R-module is isomorphic to a direct sum of copies of
R, that is, there is a (possibly infinite) index set B with M =⊕

b∈B Rb, where Rb = 〈b〉 ∼= R for all
b ∈ B. B is called the basis of M.

By the definition of direct sum, each m ∈ M has a unique expression of the form

m = ∑
b∈B

rbb

where rb ∈ R and almost all rb = 0. It follows that M = 〈B〉.
A free Z-module is called a free abelian group. Every ring R, when considered as a left

module over itself, is itself a free R-module.

Definition 1.4.7. (Projective R-module)
Let M and N be two left R-modules. A left R-module P is projective if and only if for every
surjective R-module homomorphism f : N → M and every R-module homomorphism g : P → M,
there exists an R-module homomorphism h : P → N such that g = f ◦ h, that is, there exists a
map h : P → N making the following diagram commutative:

P
h

~~
g
��

N
f // M

Theorem 1.4.8. ([52, Theorem 3.5])

i) A left R-module P is projective if and only if P is a direct summand of a free left R-module.
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ii) A finitely generated left R-module P is projective if and only if P is a direct summand of
Rn for some n.

Definition 1.4.9. (Faithfully projective R-module)
An R-module M is said to be faithful if for all distinct elements a,b of R, there exists x ∈
M such that ax 6= bx. In other words, the multiplications by a and by b define two different
endomorphisms of M.

A left R-module is faithfully projective if it is finitely generated projective and faithfull
as a left R-module.

1.5 Comodules

The notions of comodules and comodule morphisms are dual notions of modules and module
morphisms.

Definition 1.5.1. Let M be a left (right) A-module.We denote by AM (MA) the category of left
(right) A-modules. Objects are left (right) A-modules and morphisms are morphisms of left
(right) A-modules.

Definition 1.5.2. Let C = (C,∆C,εC) be a coalgebra. A left R-module M is a right C-comodule
if there exists a R-linear map ϕM : M −→ M ⊗C, which makes the following diagrams commu-
tative:

M
ϕM //

ϕM

��

M⊗C

idM⊗∆C

��

M
ϕM //

∼=

!!

M⊗C

idM⊗εC

��
M⊗C

ϕM⊗idC

// M⊗C⊗C M⊗R

The map ϕM is called the C-coaction or the coaction of C on M.

Let M = (M,ϕM) be a right C-comodule. For m ∈ M, we have the Sweedler’s notations:

ϕM(m)=Σm(0) ⊗m(1) =Σm0 ⊗m1 = m0 ⊗m1.

In the remainder of our work, we will use the notation

ϕM(m)= m0 ⊗m1, ∀m ∈ M.

With Sweedler’s notation, the commutativity of the previous diagrams is equivalent to

m0 ⊗m11 ⊗m12 = m00 ⊗m01 ⊗m1 = m0 ⊗m1 ⊗m2

and
m0εC(m1)= m ∀m ∈ M.
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Definition 1.5.3. Let C be a coalgebra and M a right C-comodule. A sub-R-module N of M is
a right sub-C-comodule of M if

ϕM(N)⊆ N ⊗C.

Definition 1.5.4. Let C be a coalgebra and let M and N be two right C-comodules. A R-linear
map f : M −→ N is a morphism of C-comodules or a C-colinear map if the following diagram is
commutative.

M
f //

ϕM

��

N

ϕN

��
M⊗C

f⊗idC

// N ⊗C,

that is: ϕN ◦ f = ( f ⊗ idC)◦ϕM . Then, for all m ∈ M,

(ϕN ◦ f )(m)= [( f ⊗ idC)◦ϕM](m)

f (m)0 ⊗ f (m)1 = f (m0)⊗m1.

The category which objects are right C-comodules and which morphisms are right C-colinear
maps is denoted M C. Let M and N be two objects of M C. Let HomC(M, N) be the R-module
of C-colinear maps from M to N.

Remark 1.5.5. We can also define a left C-comodule M with the left coaction defined by:

ϕM(m)= m−1 ⊗m0 ∈ C⊗M.

The category which objects are left C-comodules and which morphisms are left C-colinear maps
is denoted CM .

Definition 1.5.6. Let C be a coalgebra containing a grouplike element x. Let M be a right
C-comodule. An element m ∈ M is said to be (C, x)-coinvariant if

ϕM(m)= m⊗ x.

The set of (C, x)-coinvariant elements of M is denoted McoC,x; that is,

McoC,x = {m ∈ M;ϕM(m)= m⊗ x}.

McoC,x is a sub-R-module of M called a submodule of the coinvariants of M.

Definition 1.5.7. Let H be a Hopf algebra and let M be a right H-comodule. An element m of
M is said to be H-coinvariant if

ϕM(m)= m⊗1H .

We set
McoH = {m ∈ M;ϕM(m)= m⊗1H}

the set of H-coinvariant elements of M. It is also a sub-R-module of M.

An R-module M is a trivial H-comodule if M is an H-comodule and all its elements are
H-coinvariant.
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Theorem 1.5.8. Let C be a coalgebra and M be a right C-comodule. Then M is a left C∗-module
with the action defined by:

f .m = f (m1)m0, ∀ f ∈ C∗,m ∈ M.

Definition 1.5.9. (Hopf H-modules)
Let H be a Hopf algebra. An R-module M is a right Hopf H-module if it is simultaneously:

• a right H-module,

• a right H-comodule,

such that:
(mh)0 ⊗ (mh)1 = m0h1 ⊗m1h2, ∀m ∈ M,h ∈ H.

We denote by M H
H the category of right Hopf H-modules. The objects are the right Hopf H-

modules and the morphisms are the morphisms of Hopf H-modules; that is, morphisms which
are simultaneously morphisms of right H-modules and morphisms of right H-comodules. Anal-
ogously, we define:

• HM H the category of left right Hopf H-modules,

• HM H the category of right Hopf H-modules,

• H
HM the category of left Hopf H-modules.

Lemma 1.5.10. Let H be a Hopf algebra.

1) H is a Hopf H-module with the action defined by the multiplication and the coaction by
the coproduct.

2) Let M be a Hopf H-module. Then McoH ⊗H is a right Hopf H-module with the action:

(m⊗h)h′ = m⊗ (hh′), m ∈ M, h,h′ ∈ H

and the coaction:
ϕ

McoH⊗H
(m⊗h)= m⊗h1 ⊗h2.

Theorem 1.5.11. (Fundamental theorem of Hopf H-modules)
Let R be a field and H a Hopf algebra with antipode SH . Let M be a right Hopf H-module; the
map

χ : McoH ⊗H −→ M, m⊗h 7−→ mh

is an isomorphism of right Hopf H-modules.

Definition 1.5.12. (H-comodule algebras)
Let H be a Hopf algebra and A an R-algebra. We say that A is a right H−comodule algebra if
A is a right H-comodule such that:

(ab)0 ⊗ (ab)1 = a0b0 ⊗a1b1 and ϕA(1A)= 1A ⊗1H .
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Definition 1.5.13. (relative Hopf modules)
Let H be a Hopf algebra and A be a right H-comodule algebra. An R-module M is a relative
right Hopf (A,H)-module, if M is:

• a right A-module,

• a right H-comodule, such that:

(ma)0 ⊗ (ma)1 = m0a0 ⊗m1a1.

We denote by M H
A the category of relative right Hopf (A,H)-modules. The objects are the

relative right Hopf (A,H)-modules and the morphisms are the morphisms between relative
right Hopf (A,H)-modules, that is, the maps which are simultaneously right A-linear and
right H-colinear.
Analogously, we define:

• AM H the category relative left right Hopf (A,H)-modules

• HMA the category relative right left Hopf (A,H)-modules

• H
A M the category relative left Hopf (A,H)-modules

Definition 1.5.14. Let M and N be two relative right Hopf (A,H)-modules. We denote HomH
A (M, N),

the R-module of R-homomorphisms f : M −→ N which are simultaneously A-linear and H-
colinear maps; in other words,

HomH
A (M, N)= { f ∈ HomA(M, N)∩HomH(M, N)/M, N ∈M H

A }.

Remark 1.5.15. Let M be a right R-module. The R-module EndR(M) equipped with the usual
addition, the multiplication by a scalar and composition of maps is an algebra.

1.6 Monoidal, braided monoidal, and symmetric monoidal
categories

In this part, our goal is not to develop the theory of categories but just to state some notions
and useful results for the rest of this document. So for all generalities on category theory, see
[54], [22, p. 361], [9], [52], [2], [7], · · ·
Definition 1.6.1. (cf.[52, Sect. 1.2])
A category C consists of three ingredients: a class Ob j(C ) of objects, a set of morphisms
Hom(M, N) for every ordered pair (M, N) of objects, and composition

Hom(M, N)×Hom(N,P)→ Hom(M,P),

denoted by
( f , g) 7→ g ◦ f ,

for every ordered triple M, N,P of objects. These ingredients are subject to the following axioms:
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1. the Hom sets are pairwise disjoint; that is, each f ∈ Hom(M, N) has a unique domain
M and a unique target N;

2. for each object M, there is an identity morphism 1M ∈ Hom(M, M) such that f ◦1M = f
and 1N ◦ f = f for all f : M → N,

3. composition is associative: given morphisms M
f−→ N

g−→ P h−→Q, then

h◦ (g ◦ f )= (h◦ g)◦ f .

Definition 1.6.2. (subcategory, cf.[52, Sect. 1.2])
A category D is a subcategory of a category C if:

1. Ob j(D)⊆Ob j(C ),

2. HomD(M, N) ⊆ HomC (M, N) for all M, N ∈ Ob j(D), where we denote Hom sets in D

by HomD(−,−),

3. if f ∈ HomD(M, N) and g ∈ HomD(N,P), then the composite g◦ f ∈ HomD(M,P) is equal
to the composite g ◦ f ∈ HomC (M,P),

4. if M ∈Ob j(D), then the identity 1M ∈ HomD(M, M) is equal to the identity 1M ∈ HomC (M, M).

A subcategory D of C is a full subcategory if, for all M, N ∈ Ob j(D), we have HomD(M, N) =
HomC (M, N).

Definition 1.6.3. (Dual category) A category C ′ is said to be a dual category of the category
C if:

1. Ob j(C )=Ob j(C ′),

2. HomC (M, N)= HomC ′(N, M).

Definition 1.6.4. (Covariant functor)
Let C and D be two categories. The functor F : C →D is a function such that:

• if M ∈Ob j(C ), then F (M) ∈Ob j(D),

• if f : M −→ M′ in C , then F ( f ) : F (M′)−→F (M) in D (note the reversal of arrows),

• if M
f−→ M′ g−→ M′′ in C , then F (M′′) F (g)−→ F (M′) F (f)−→F (M) and

F (g ◦ f )=F ( f )◦F (g),

• F (1M)= 1
F (A) for every M ∈Ob j(C ).

The functor F defined above is called covariant functor.
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Definition 1.6.5. (contravariant functor)

Let C ′ (respectively D′) be the dual category to the category C (respectively D). A covariant
functor from the dual category C ′ to D (or D′ to C ) called a contravariant functor from C to
D.

Remark 1.6.6. • If F : C →D is a covariant functor, then for any object M, N ∈C , we
have a map

Hom
C

(M, N)−→ Hom
D

(F (M),F (N)) given by f 7−→F ( f ).

• If this map is injective (surjective, bijective), then the functor F is called faithful
(full, full and faithful).

Definition 1.6.7. (Functorial morphisms or natural transformations)
Let F ,G : C −→ D be two functors. A functorial morphism φ : F −→ G is a family
{φ(M) / M ∈C } of morphisms, such that

φ(M) : F (M)−→G (M) ∀M ∈C

and for any morphism f : M −→ N in C , we have that

φ(N)◦F ( f )=G ( f )◦φ(M).

If moreover φ(M) is an isomorphism for any M ∈C , then φ is called a functorial isomor-
phism. If there exists such a functorial isomorphism we write F ∼=G .

Definition 1.6.8. (Adjoint pair)
Let F ,G : C −→D and G : D −→C be two covariant functors. The ordered pair (F ,G )
is an adjoint pair if, for each M ∈Ob j(C ) and N ∈Ob j(D), there are bijections

φ : Hom
D

(F (M), N)−→ Hom
C

(M,G (N)),

that are natural transformations in C and in D.

Definition 1.6.9. (Equivalence of categories)
Let C and D be two categories. A covariant functor F : C → D is called an equivalence of
categories if there exists a covariant functor G : D → C such that F ◦G ∼= 1D and G ◦F ∼= 1C ,
where 1C : C → C is the identity functor and it is defined by 1C (M) = M for any object M and
1C ( f ) = f for any morphism f . If moreover F ◦G = 1D and G ◦F = 1C , then F is called an
isomorphism of categories, and C and D are called isomorphic categories.

Theorem 1.6.10. ([22, Theorem A.2.1])
If F : C −→ D is a covariant functor, then F is an equivalence of categories if and only if the
following conditions are satisfied.

1. F is a full and faithful functor.
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2. For any object N ∈D there exists an object M ∈C such that N ∼=F (M).

A contravariant functor F : C −→D such that F is an equivalence between C ′ (the dual of
C ) and D (or C and D′ (the dual of D) ) is called duality.

Definition 1.6.11. (Monoidal category)
A monoidal category (or tensor category) C = (C ,⊗, I,α, l, r) consists of:

• a category C ,

• a functor called the tensor product ⊗ : C ×C →C such that (M, N) 7→ M⊗N and ( f , g) 7→
f ⊗ g for all objects M, N ∈C and morphisms f , g ∈C ,

• an object called the identity object I ∈C ,

• natural isomorphisms called,
the associator:

αM,N,P : (M⊗N)⊗P → M⊗ (N ⊗P)

the left unit law:
lM : I ⊗M → M

and the right unit law:
rM : M⊗ I → M

such that the following diagrams commute for all objects M, N,P,Q ∈C , we have:

◦ the pentagon diagram:

((M⊗N)⊗P)⊗Q
αM⊗N,P,Q

��

αM,N,P ⊗idQ
// (M⊗ (N ⊗P))⊗Q

αM,N⊗P,Q // M⊗ ((N ⊗P)⊗Q)

idM⊗αN,P,Q
��

(M⊗N)⊗ (P ⊗Q)
αM,N,P⊗Q

// M⊗ (N ⊗ (P ⊗Q))

◦ the triangle diagram:

(M⊗ I)⊗N
αM,I,N //

rM⊗idN
&&

M⊗ (I ⊗N)

idM⊗lN
xx

M⊗N

Definition 1.6.12. (Monoidal functor)
Let C = (C ,⊗, I,αC , lC , rC ) and D = (D,⊗, J,αD , lD , rD) be two monoidal categories. A monoidal
functor between C and D is the triplet (F ,ϕ0,ϕ2) such that F : C −→D is a functor and

ϕ0 : J −→F (I), ϕ2 : F (−)⊗F (−)−→F (−⊗−)
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are functorial isomorphisms such that, for all objects M, N,P ∈ C , the following diagrams are
commutative:

(F (M)⊗F (N))⊗F (P)

ϕ2(M,N)⊗idF (P)

��

αD // F (M)⊗ (F (N)⊗F (P))

idF (M)⊗ϕ2(N,P)

��
F (M⊗N)⊗F (P)

ϕ2(M⊗N,P)

��

F (M)⊗F (N ⊗P)

ϕ2(M,N⊗P)

��
F ((M⊗N)⊗P)

F (αC )
// F (M⊗ (N ⊗P))

F (M)⊗ J
idF (M)⊗ϕ0 //

rF (M)

��

F (M)⊗F (I)

ϕ2(M,I)

��
F (M) F (M⊗ I)

F (rM )
oo

J⊗F (M)
ϕ0⊗idF (M) //

lF (M)

��

F (I)⊗F (M)

φ2(I,M)

��
F (M) F (I ⊗M)

F (lM )
oo

Definition 1.6.13. (braided monoidal category)
A braided monoidal category consists of:

• a monoidal category C ,

• a natural isomorphism called the braiding:

γM,N : M⊗N −→ N ⊗M

such that these two diagrams commute, called the hexagon diagrams:

M⊗ (N ⊗P)
γ // (N ⊗P)⊗M

α

((
(M⊗N)⊗P

α
66

γ⊗idP ((

N ⊗ (P ⊗M)

(N ⊗M)⊗P
α

// N ⊗ (M⊗P)
idN⊗γ

66
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(M⊗N)⊗P
γ // P ⊗ (M⊗N)

α−1

((
M⊗ (N ⊗P)

α−1
66

idM⊗γ ((

(P ⊗M)⊗N

M⊗ (P ⊗N)
α−1

// (M⊗P)⊗N
γ⊗idN

66

Definition 1.6.14. (braided monoidal functor)
Let C and D be two braided monoidal categories. A functor F : C −→D is braided monoidal if
it is monoidal and it makes the following diagram commutative for all objects N and M

F (M)⊗F (N)
γ

F (M),F (N) //

ϕ2(M,N)

��

F (N)⊗F (M)

ϕ2(N,M)

��
F (M⊗N)

F (γM,N )
// F (N ⊗M)

Definition 1.6.15. (symmetric monoidal category)
A symmetric monoidal category is a braided monoidal category C for which the braiding satis-
fies

γM,N = γ−1
N,M

;

for all objects M and N of C .

A monoidal, braided monoidal, or symmetric monoidal category is called strict if α, l, r are
all identity morphisms.
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Abstract

In this article, we define the notion of Brauer-Clifford group for the category of dyslectic
(S,H)-dimodules, where H is a commutative and cocommutative Hopf algebra and S is an H-
commutative dimodule algebra. This Brauer group turns out to be an example of the Brauer
group of a braided monoidal category. We also show that this Brauer group is anti-isomorphic
to the Brauer group of the category of dyslectic Hopf Yetter-Drinfel’d (Sop,H)-modules.

Introduction

The classical notion of Brauer group was introduced by Richard Brauer in his study of arith-
metic field theory before being generalized by Azumaya in [8] and Auslander-Goldman in [6]
respectively in the case of the Brauer group of a local base ring and the Brauer group of a
general commutative base ring. This notion is later extended by Auslander in [5] to the case
of a topological space endowed with its structural sheaf of rings of continuous complex valued
functions. Grothendieck showed in [26] that the set of isomorphic classes of Azumaya algebras
with constant rank n2 over a topological space, is identified with the set of isomorphic classes
of GP(n)-principal bundles with base this space.
The isomorphic classes of Azumaya algebras over a commutative ring R form a set which in
turn is a group B(R) (with multiplication given by the tensor product over R) known in the
literature as the Brauer group of R. For symmetric monoidal categories, Brauer groups were
defined by Pareigis [47] and more generally for the braided monoidal categories by Van Oys-
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taeyen and Zhang [59]. Studies have also been developed in this same context by [24], [60],
[23]. Recently, in [4], Ardizzoni and El Kaoutit give a characterization of the automorphism
group of an Azumaya comodule algebra over a commutative flat Hopf algebroid.

A braided monoidal category is a category C with a tensor product ⊗ that has a unit object
R and has a family of isomorphisms γM,N : M ⊗N −→ N ⊗M, one for each pair of objects in C ,
satisfying natural coherence conditions. If γN,M ◦γM,N = idM⊗N always holds, then the braided
monoidal category is said to be symmetric. If C is a braided monoidal category, we know from
[59] that we can define a Brauer group in C .

Brauer-Clifford groups are equivariant Brauer groups for which a Hopf algebra acts or co-
acts non-trivially on a certain commutative base ring.

In [40], Long introduced a Brauer group BD(R,H) of H-dimodule algebras (that is, algebras
with an H-action and an H-coaction satisfying some compatibility conditions), where R is a
commutative ring and H is a commutative and cocommutative Hopf algebra over R. This
Brauer group is called Long’s Brauer group. The category DH of H-dimodules is a braided
monoidal category: the braiding γ is defined by

γM,N : M⊗R N −→ N ⊗R M; m⊗n 7→ m1n⊗m0.

In [17], Caenepeel, Van Oystaeyen, and Zhang generalized Long’s construction to Yetter-
Drinfel’d’s modules also called quantum Yang-Baxter modules and to Yetter-Drinfel’d module
algebras, where H is a Hopf algebra with a bijective antipode. The category QH of Yetter-
Drinfel’d modules is a braided monoidal category: the braiding γ is defined by

γM,N : M⊗R N −→ N ⊗R M;m⊗n 7→ n0 ⊗n1m.

They defined the Brauer group BQ(R,H) of Hopf Yetter-Drinfel’d H-modules Azumaya alge-
bras. In the same paper, the authors introduced (Proposition: 2.1) the category SQH of Hopf
Yetter-Drinfel’d (S,H)-modules, where S is H-commutative with respect to the braiding of QH .
They showed that SQH is a monoidal category.
In [32], Guédénon and Herman considered the abelian full subcategory D ys-SQH of dyslec-
tic Hopf Yetter-Drinfel’d (S,H)-modules adapting a conditon of [50]. The authors showed that
D ys-SQH is a braided monoidal category: the braiding is the extension of the braiding of QH to
D ys-SQH and they defined a Brauer group BQ(S,H) of Azumaya algebras in D ys-SQH called
the Brauer-Clifford-Long group of dyslectic Hopf Yetter-Drinfel’d (S,H)-module Azumaya alge-
bras. When H is commutative and cocommutative, we get from [32] the Brauer-Clifford-Long
group of dyslectic (S,H)-dimodule Azumaya algebras.

In the present paper, we introduce the notion of (dyslectic) (S,H)-dimodules, where H is
commutative and cocommutative and S is H-commutative with respect to the braiding of DH .
We denote by SDH the category of (S,H)-dimodules and by D ys-SDH its subcategory of dyslec-
tic (S,H)-dimodules. We show that D ys-SDH is a braided monoidal category: the braiding is
induced by the braiding of DH . We define algebras and Azumaya algebras in D ys-SDH . From
that, we define the Brauer group BD(S,H) of Azumaya algebras in D ys-SDH which we call
the Brauer-Clifford-Long group of dyslectic (S,H)-dimodules Azumaya algebras. Our result is
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a direct generalization of Long’s Brauer group. In particular, we get a generalization of the
Brauer-Clifford group B(S,H) of (S,H)-Azuamaya algebras, when H is cocommutative and S
is commutative, and a generalization of the Brauer-Clifford group Bco(S,H) of Hopf (S,H)-
Azumaya algebras studied in [31], when H is commutative and S commutative.
We also establish an anti-isomorphism of groups between our Brauer-Clifford-Long group BD(S,H)
and the Brauer-Clifford-Long group BQ(Sop,H) of algebras in the category of Hopf Yetter-
Drinfeld (Sop,H)-modules studied in [32], where Sop is the opposite algebra of S. This last
result is a generalization of the well-known result which asserts that the Brauer group of
Long dimodules and the Brauer group of Yetter-Drinfeld modules are anti-isomorphic if H is
commutative and cocommutative.

The paper is organized as follows. In Section 1, we review some results of Hopf algebras
and some preliminary results concerning dimodules and braided monoidal categories.

In Section 2, we introduce the notion of (S,H)-dimodules, where S is an H-dimodule alge-
bra and we define the category SDH of (S,H)-dimodules with (S,H)-dimodule homomorphisms.

In Section 3, we introduce the concept of dyslectic (S,H)-dimodules and we define the cat-
egory D ys-SDH of dyslectic (S,H)-dimodules in order to obtain a braided monoidal category.
The monoidal structure is given by relative tensor products over S. Note that the category
D ys-SDH is an abelian full subcategory of SDH .

In Sections 4 and 5, we introduce the concepts of dyslectic (S,H)-dimodule algebras and
dyslectic (S,H)-dimodule Azumaya algebras in the category D ys-SDH , and we give all the
required ingredients to define the Brauer-Clifford-Long group BD(S,H).

In Section 6, we give some elementary homomorphisms between Brauer- Clifford-Long
groups that are induced by scalar extensions and central twists.

Finally, in Section 7, we establish an anti-isomorphism of groups between the Brauer-
Clifford-Long group BD(S,H) of algebras in the category of dyslectic (S,H)-dimodules and
the Brauer-Clifford-Long group BQ(Sop,H) of algebras in the category of dyslectic Hopf-Yetter-
Drinfeld (Sop,H)-modules, where Sop is the opposite algebra of S.

For more details on Hopf algebras and Brauer groups, we refer to the literature, see for
example [1], [14], [44], [56]. Throughout the paper, R stands for a commutative ring with unit,
and H is a Hopf algebra over R. Any algebras, modules and unadorned tensor products are
always over R

2.1 Preliminaries and Notations

Let H be a Hopf R-algebra. We denote its comultiplication by ∆ : H → H ⊗H, its antipode by
SH : H → H and its counit by ε : H → R. We will use Sweedler-Heyneman notation, omitting
sums, so we write ∆(h)= h1 ⊗h2.

A Hopf algebra H is said to be cocommutative if h1 ⊗ h2 = h2 ⊗ h1, for all h ∈ H. We will
require a sequence of definitions, all of which are standard. An R-algebra A is an H-module
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algebra if A is a left H-module such that

h.(ab)= (h1.a)(h2.b) and h.1A = ε(h)1A, for all a,b ∈ A,h ∈ H. (2.1.1)

H acts trivially on A when h.a = ε(h)a for all h ∈ H and a ∈ A. A homomorphism of H-module
algebras is a homomorphism of H-modules which is also a homomorphism of R-algebras. If
A is an H-module algebra, then the smash product algebra A#H is the R-module A⊗H with
multiplication

(a⊗h)(a′⊗h′)= a(h1.a′)⊗h2h′, for all a,a′ ∈ A and h,h′ ∈ H. (2.1.2)

An R-module M is a left A#H-module if it is a left A-module (a⊗m 7→ a*m, where * denotes
the left A-action on M) and a left H-module for which

h(a*m)= (h1.a)* (h2m), for all h ∈ H,a ∈ A and m ∈ M. (2.1.3)

If A is an H-module algebra and S is a sub-H-module algebra of A, then the algebras A and
S are left S#H-modules. We will write A#HM for the category of left A#H-modules. It was
observed in [31, Theorem 2.2] that if H is cocommutative and A is a commutative H-module
algebra, then (A#HM ,⊗A, A) is a symmetric monoidal category.
If H is a Hopf algebra over R, an R-module M is a right H-comodule if there exists an R-
linear map ρM : M → M ⊗ H satisfying (ρM ⊗ idH) ◦ρM = (idM ⊗∆) ◦ρM and (idM ⊗ ε) ◦ρM =
idM . In Sweedler notation, we write ρM (m)= m0⊗m1 for all m ∈ M, and the right H-comodule
conditions on M are

m00 ⊗m01 ⊗m1 = m0 ⊗m11 ⊗m12 and m0ε(m1)= m, for all m ∈ M. (2.1.4)

H coacts trivially on M when m0 ⊗ m1 = m0 ⊗ 1H , for all m ∈ M. Let M and N be right H-
comodules. A homomorphism of right H-comodules (aka. a right H-colinear map) is an R-
linear map f : M → N such that ρN ◦ f = ( f ⊗ idH)◦ρM . In Sweedler notation, this is equivalent
to

f (m)0 ⊗ f (m)1 = f (m0)⊗m1, for all m ∈ M. (2.1.5)

If M and N are right H-comodules, then M ⊗ N is a right H-comodule under the codiagonal
coaction:

(m⊗n)0 ⊗ (m⊗n)1 = m0 ⊗n0 ⊗m1n1, m ∈ M,n ∈ N. (2.1.6)

An R-algebra A is an H-comodule algebra if A is a right H-comodule and the multiplication in
A satisfies

(ab)0 ⊗ (ab)1 = a0b0 ⊗a1b1 and ρA(1A)= 1A ⊗1H , for all a,b ∈ A. (2.1.7)

A homomorphism of H-comodule algebras is a homomorphism of H-comodules which is also a
homomorphism of R-algebras.
Let A be a right H-comodule algebra. An R-module M is an (A,H)-Hopf module if M is both a
left A-module and a right H-comodule, with the property

(a*m)0 ⊗ (a*m)1 = (a0 *m0)⊗a1m1, for all a ∈ A,m ∈ M. (2.1.8)
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A homomorphism of (A,H)-Hopf modules is a left A-linear map which is also a right H-colinear
map. We will write AM H for the category of (A,H)-Hopf modules. This category is dual to
A#HM , and when H is commutative and A is a commutative H-comodule algebra, (AM H ,⊗A, A)
is a symmetric monoidal category.

Let H be commutative and cocommutative. An H-dimodule is an R-module M which is a
left H-module and a right H-comodule with H-structures maps λM : H⊗M → M and ρM : M →
M⊗H such that ρM ◦λM = (λM ⊗ idM)◦ (idH ⊗ρM ), that is:

(hm)0 ⊗ (hm)1 = hm0 ⊗m1, ∀h ∈ H,m ∈ M. (2.1.9)

If M and N are H-dimodules, an R-linear map f : M → N is said to be an H-dimodule homo-
morphism if it is simultaneously an H-module homomorphism and an H-comodule homomor-
phism.
An H-dimodule algebra is an R-algebra which is an H-dimodule so that it is an H-module
algebra and an H-comodule algebra satisfying the relation (2.1.9).

An H-dimodule algebra homomorphism between two H-dimodule algebras A and B is an
R-linear map A → B which is simultaneously an H-dimodule homomorphism and an R-algebra
homomorphism.
We denote the category of H-dimodules by DH . For H-dimodules M and N, the tensor product
M⊗N has an H-module structure given by

h(m⊗n)= (h1m)⊗ (h2n), ∀m ∈ M,n ∈ N, (2.1.10)

and an H-comodule structure given by

(m⊗n)0 ⊗ (m⊗n)1 = m0 ⊗n0 ⊗m1n1, ∀m ∈ M,n ∈ N. (2.1.11)

These H-structures satisfy the compatibility condition (2.1.9) and make of M⊗N an H-dimodule,
denoted by M⊗̃N.
Since H is commutative and cocommutative, for H-dimodules M and N, there exists an H-
dimodule isomorphism γM,N from M⊗̃N to N⊗̃M defined by (see [59])

γM,N (m⊗̃n)= m1.n⊗̃m0, ∀m ∈ M,n ∈ N, (2.1.12)

with inverse
γ−1

M,N
(n⊗̃m)= m0⊗̃SH(m1)n, ∀m ∈ M,n ∈ N. (2.1.13)

According to [59, Example 3.11], (DH ,⊗̃R ,γM,N ,R) is a braided monoidal category. Note that
an H-dimodule algebra is just an algebra in the braided monoidal category DH . Recall that
a monoidal category (C ,⊗,R) is braided if there are natural isomorphisms γM,N : M ⊗N ∼= N ⊗
M in C , for all M, N ∈C , such that the following hexagonal coherence conditions are satisfied
(see [42, p. 180])

γM⊗N,P = (γM,P ⊗1)◦ (1⊗γN,P ) and γM,N⊗P = (1⊗γM,P )◦ (γM,N ⊗1), for all M, N,P ∈C .

Let’s give two examples of H-dimodules.
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Example 2.1.1. H is a group algebra RG.

Let G be a multiplicative finite abelian group with unit element e. The group algebra RG
is a commutative and cocommutative Hopf algebra. A G-graded R-module M is an R-module
M with a fixed decomposition M = ⊕

σ∈G Mσ, where each Mσ is an R-submodule of M. Mσ

is the set of the homogeneous elements of degree σ. Every element of M is a finite sum of
homogeneous elements. It is well known that an R-module is a G-graded R-module if and only
if it is an RG-comodule. According to [15], a G-dimodule is a left G-module which is also a
G-graded R-module and the G-action is compatible with the gradation, that is, σ′.Mσ ⊆ Mσ,
for all σ,σ′ ∈G.

We denote by DG the category of G-dimodules: its morphisms are the graded R-linear
maps of degree e which are G-linear. It is well known that the categories DG and DRG are
isomorphic.

Let’s consider the particular case G = {e,σ}, the cyclic group of order 2 (see [45]).
Let M be an RG-dimodule. The coaction of RG on M is

ρM(m)= m(0) ⊗ e+m(1) ⊗σ, where m(0),m(1) ∈ M.

We have: m = m(0) +m(1), ∀m ∈ M. The dimodule condition is

ρ(σm)= (σm(0))⊗ e+ (σm(1))⊗σ,

that is: (σm)(0) =σm(0) and (σm)(1) =σm(1).

If we consider M as a G-dimodule M = Me+Mσ, every element of M is a sum of an element
of degree e and an element of degree σ. It follows that m(0) and m(1) are homogeneous elements
of degree e and σ, respectively.

Example 2.1.2.

Let G and G′ be two abelian finite groups and k a field. Set H = Maps(G
⊎

G′,k) the set of
all maps from the disjoint union G

⊎
G′ of G and G′ to k. Then H = K×L, where K = Maps(G,k)

and L = Maps(G′,k). We claim that K and L are commutative and cocommutative Hopf alge-
bras over k and that H = K×L is a commutative and cocommutative Hopf algebra over R =k×k
(with component-wise operations). Therefore we can define the categories DK , DL and DH .

Let M be a vector space over k. So M can be seen as a left R-module via the first projection

R −→k; (λ,λ′) 7→λ.

Suppose that M is a left K-module via

(k⊗k m) 7→ km
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for k ∈ K and m ∈ M, then M is a left H-module via

((k, l)⊗R m) 7→ km,

for (k, l) ∈ H, m ∈ M. In the same way, if M is a right K-comodule via

ρK (m)= m0 ⊗k m1,

then M is a right H-comodule via

ρH(m)= m[0] ⊗R m[1] = m0 ⊗R (m1,0)

From this, every K-dimodule M can be viewed as an H-dimodule: the H-dimodule condition is

[(k, l)m][0] ⊗R [(k, l)m][1] = [(k, l)m[0]]⊗R m[1], ∀(k, l) ∈ H,m ∈ M.

2.2 The category of (S,H)-dimodules

Let S be an H-dimodule algebra. An (S,H)-dimodule M is a left S-module and an H-dimodule
satisfying the compatibility conditions (2.1.3) and (2.1.8), equivalently, M is a left S#H-module
and an (S,H)-Hopf module for which relation (2.1.9) is satisfied. An (R,H)-dimodule is just
an H-dimodule. Furthermore, note that if S is an H-dimodule algebra, then S is an (S,H)-
dimodule: the left action of S is given by s* s′ = ss′, for all s, s′ ∈ S.
An (S,H)-dimodule homomorphism is an H-dimodule map which is also left S-linear. We de-
note by SDH the category consisting of (S,H)-dimodules and (S,H)-dimodule homomorphisms,
that is, the left S#H-linear right H-colinear maps.
If M and N are (S,H)-dimodules, we denote by S#H HomH(M, N) the R-module of left S#H-
linear right H-colinear maps from M to N.

Let S be an H-module algebra. We say that S is H-commutative if

ss′ = (s1.s′)s0, for all s, s′ ∈ S. (2.2.1)

If S is an H-commutative H-dimodule algebra, then for every left S-action on M ∈ SDH there
is a corresponding right S-action defined by

m( s = (m1.s)*m0, for all s ∈ S,m ∈ M. (2.2.2)

This allows us to view M as an S-S-bimodule. Note that the left S-action and the right S-action
are also related by

s*m = m0 ( (SH(m1).s), for all s ∈ S,m ∈ M. (2.2.3)

Note also that we have
h(m( s)= (h1m)( (h2.s) (2.2.4)

and
(m( s)0 ⊗ (m( s)1 = (m0 ( s0)⊗m1s1, for all h ∈ H,m ∈ M, s ∈ S. (2.2.5)
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Let S be an H-commutative H-dimodule algebra. Then for M and N in SDH , we can endow
the tensor product M⊗S N with the following S-action and H-structures:

s* (m⊗̃n)= (s*m)⊗̃n, (2.2.6)

h(m⊗̃n)= h1m⊗̃h2n (2.2.7)

and
(m⊗̃n)0 ⊗ (m⊗n)1 = m0⊗̃n0 ⊗m1n1, (2.2.8)

for all h ∈ H, s ∈ S,m ∈ M, and n ∈ N, where m⊗̃n = m⊗S n.
Note that we have

(m⊗̃n)( s = m⊗̃(n( s), for all m ∈ M,n ∈ N, s ∈ S. (2.2.9)

In the remainder of this section, H is a commutative and cocommutative Hopf algebra and
S is an H-commutative H-dimodule algebra.

Lemma 2.2.1. With these structures described above, M ⊗S N is an (S,H)-dimodule which is
denoted M⊗̃S N.

Proof. For all m,m′ ∈ M, n,n′ ∈ N and s ∈ S we have:

(m( s)⊗̃n = ((m1.s)*m0)⊗̃n
= (m1.s)* (m0⊗̃n)
= (m0⊗̃n)0 ( [SH((m0⊗̃n)1)(m1.s)]
= (m00⊗̃n0)( [SH(m01n1)(m1.s)]
= (m00⊗̃n0)( [SH(n1)SH(m01)(m1.s)]
= (m0⊗̃n0)( [(SH(n1)SH(m11)m12).s]
= (m0⊗̃n0)( [SH(n1)ε(m1).s]
= (m0ε(m1)⊗̃n0)( [SH(n1).s]
= m⊗̃(n0 ( (SH(n1).s))
= m⊗̃(s* n).

For all h ∈ H,m ∈ M,n ∈ N and s ∈ S, we have

h((m( s)⊗̃n) = (h1(m( s))⊗̃(h2n)
= ((h1m)( (h2.s))⊗̃(h3n)
= (h1m)⊗̃((h2.s)* (h3n))
= (h1m)⊗̃(h2(s* n))
= h(m⊗̃(s* n))

and
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ρ((m( s)⊗̃n) = ((m( s)⊗̃n)0 ⊗ ((m( s)⊗̃n)1
= ((m( s)0⊗̃n0)⊗ ((m( s)1n1)
= ((m0 ( s0)⊗̃n0)⊗ ((m1s1)n1)
= (m0⊗̃(s0 * n0)⊗ (m1(s1n1))
= (m0⊗̃(s* n)0)⊗ (m1(s* n)1)
= (m⊗̃(s* n))0 ⊗ (m⊗̃(s* n))1
= ρ(m⊗̃(s* n)).

So the S-action, the left H-action and the right co-action are well defined.
M⊗̃S N is a left S-module, for all s, s′ ∈ S,m ∈ M and n ∈ N, we have:

(ss′)* (m⊗̃n) = ((ss′)*m)⊗̃n
= (s* (s′*m))⊗̃n
= s* ((s′*m)⊗̃n)
= s* (s′* (m⊗̃n)).

It is easy to see that M⊗̃S N is a left H-module and a right H-comodule. We will prove that
the equation (2.1.9) is satisfied. We have for all h ∈ H,m ∈ M, and n ∈ N :

[h(m⊗̃n)]0 ⊗ [h(m⊗̃n)]1 = (h1m⊗̃h2n)0 ⊗ (h1m⊗̃h2n)1
= ((h1m)0⊗̃(h2n)0)⊗ ((h1m)1(h2n)1)
= (h1m0⊗̃h2n0)⊗ (m1n1)
= h(m0⊗̃n0)⊗ (m1n1)
= h(m⊗̃n)0 ⊗ (m⊗n)1.

The condition (2.1.9) is sitstified. Therefore M⊗̃S N is an H-dimodule.
For all h ∈ H, s ∈ S,m ∈ M and n ∈ N, we have

h[s* (m⊗̃n)] = h[(s*m)⊗̃n]
= (h1.(s*m))⊗̃(h2.n)
= ((h1.s)* (h2.m))⊗̃(h3.n)
= (h1.s)* [(h2.m)⊗̃(h3.n)]
= (h1.s)* [(h21.m)⊗̃(h22.n)]
= (h1.s)* (h2.(m⊗̃n)),

[s* (m⊗̃n)]0 ⊗ [s* (m⊗̃n)]1 = [(s*m)⊗̃n]0 ⊗ [(s*m)⊗̃n]1
= [(s*m)0⊗̃n0]⊗ (s*m)1n1
= [(s0 *m0)⊗̃n0]⊗ (s1m1)n1
= [s0 * (m0⊗̃n0)]⊗ s1(m1n1)
= [s0 * (m⊗̃n)0]⊗ s1(m⊗̃n)1.

So the relations (2.1.3) and (2.1.8) are sitisfied. Then M⊗̃S N is an (S,H)-dimodule.
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ä

It is easy to see that for M, N,P ∈ SDH , the natural map (M⊗̃S N)⊗̃SP → M⊗̃S(N⊗̃SP) is
an (S,H)-dimodules isomorphism, and S is a unit with respect to ⊗̃S. Therefore (SDH ,⊗̃S,S)
is a monoidal category.

In the remainder of the paper, if M and N are (S,H)-dimodules, we denote by HomS(M, N)
the R-module of right S-linear maps from M to N considered as right S-modules and SHom(M, N)
the R-module of left S-linear maps from M to N considered as left S-modules.

Lemma 2.2.2. Let M and N be (S,H)-dimodules. Then the following hold:

(i) HomS(M, N) is a left S#H-module, where the action of S is defined by

(s* f )(m)= s* f (m), for all s ∈ S, f ∈ HomS(M, N),m ∈ M, (2.2.10)

and the action of H is defined by

(hf )(m)= h1[ f (SH(h2)m)], for all f ∈ HomS(M, N),h ∈ H,m ∈ M. (2.2.11)

(ii) If M is finitely generated projective as a right S-module, then HomS(M, N) is an (S,H)-
dimodule, where the coaction of H is defined by

f0(m)⊗ f1 = f (m0)0 ⊗ f (m0)1SH(m1), for all f ∈ HomS(M, N),m ∈ M. (2.2.12)

Proof.

(i) It is clear that the left S-action is well defined and HomS(M, N) is a left S-module. Let
h ∈ H,m ∈ M, s ∈ S, and f ∈ HomS(M, N), we have:

(hf )(m( s) = h1[ f (SH(h2)(m( s)]
= h1[ f ((SH(h2)1m)( (SH(h2)2.s))]
= h1[ f ((SH(h22)m)( (SH(h21).s))]
= h1[( f (SH(h3)m))( (SH(h2).s)]
= [h11( f (SH(h3)m))]( [h12(SH(h2).s)]
= [h1( f (SH(h3)m))]( [(h21SH(h22)).s]
= ((hf )(m))( s

So (hf ) ∈ HomS(M, N), that is, the left H-action is well defined. It is easy to see that
HomS(M, N) is a left H-module. Let f be an element of HomS(M, N). For all h ∈ H,m ∈
M, and s ∈ S, we have:
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[h(s* f )](m) = h1[(s* f )(SH(h2)m)]
= h1[s* ( f (SH(h2)m)]
= (h1.s)* [h21( f (SH(h22)m)]
= [(h1.s)* (h2 f )](m).

So the relation (2.1.3) is satisfied. Therefore HomS(M, N) is a left S#H-module.

(ii) Let us consider the map

ρ : HomS(M, N)→ HomS(M, N ⊗H)

defined by

ρ( f )(m)= f (m0)0 ⊗ f (m0)1SH(m1), for all f ∈ HomS(M, N),m ∈ M.

Since M is finitely generated projective as a right S-module,

HomS(M, N ⊗H)∼= HomS(M, N)⊗H.

We put ρ( f )= f0 ⊗ f1 if and only if

f0(m)⊗ f1 = f (m0)0 ⊗ f (m0)1SH(m1).

So HomS(M, N) becomes a right H-comodule. Let f ∈ HomS(M, N),m ∈ M and s ∈ S, we
have:

(s* f )0(m)⊗ (s* f )1 = (s* f )(m0)0 ⊗ (s* f )(m0)1SH(m1)
= (s* f (m0))0 ⊗ (s* f (m0))1SH(m1)
= (s0 * f (m0)0)⊗ s1 f (m0)1SH(m1)
= (s0 * f0(m))⊗ s1 f1
= (s0 * f0)(m)⊗ s1 f1;

so the condition (2.1.8) is satisfied.

For all h ∈ H,m ∈ M,and f ∈ HomS(M, N), we have:

(hf )0(m)⊗ (hf )1 = [(hf )(m0)]0 ⊗ [(hf )(m0)]1SH(m1)
= [h1( f (SH(h2)m0))]0 ⊗ [h1( f (SH(h2)m0))]1SH(m1)
= h1( f (SH(h2)m0))0 ⊗ ( f (SH(h2)m0))1SH(m1)
= h1( f ([SH(h2)m]0)0)⊗ ( f ([SH(h2)m]0)1)SH([SH(h2)m)]1)
= h1( f0([SH(h2)m]))⊗ f1
= (hf0)(m)⊗ f1,

Brauer groups in some braided monoidal categories C. L. NANGO ©UASZ/UFR-ST/LMA/Hopf Algebra, 2021



CHAPTER 2. A BRAUER-CLIFFORD-LONG GROUP FOR THE CATEGORY OF DYSLECTIC (S,H)-DIMODULE ALGEBRAS 35

hence the condition (2.1.9) is satisfied. Therefore HomS(M, N) is an (S,H)-dimodule.

ä

Since S is not necessarily commutative, we need to consider the left and right S-module
homomorphisms separately.

Lemma 2.2.3. Let M and N be (S,H)-dimodules.

(i) Then SHom(M, N) is a left S#H-module, where the action of S is defined by

(s* f )(m)= f (m( s), for all s ∈ S, f ∈ SHom(M, N),m ∈ M, (2.2.13)

and the coaction of H is defined by

(hf )(m)= h1[ f (SH(h2)m)], for all f ∈ SHom(M, N),h ∈ H,m ∈ M. (2.2.14)

(ii) If M is finitely generated projective as a left S-module, then SHom(M, N) is an (S,H)-
dimodule, where the coaction of H is defined by

f0(m)⊗ f1 = f (m0)0 ⊗ f (m0)1SH(m1), for all f ∈ SHom(M, N),m ∈ M. (2.2.15)

Proof.

(i) Let f ∈ SHom(M, N), h ∈ H, s ∈ S and n ∈ N. We have

(hf )(s*m) = h1[ f (SH(h2)(s*m))]
= h1[ f (SH(h2)1.s* SH(h2)2m)]
= h1[ f (SH(h22).s* SH(h21)m)]
= h1[SH(h22).s* f (SH(h21)m))]
= h1[SH(h3).s* f (SH(h2)m))]
= h1[SH(h2).s* f (SH(h3)m))]
= [h11.(SH(h2).s)]* [h12.( f (SH(h3)m)))]
= [(h11SH(h2)).s]* [h12.( f (SH(h3)m))]
= [(h1SH(h3)).s]* [h2.( f (SH(h4)m))]
= [(h1SH(h2)).s]* [h3.( f (SH(h4)m))]
= [ε(h1)s]* [h2( f (SH(h3)m))]
= s* [ε(h1)h2( f (SH(h3)m))]
= s* [h1( f (SH(h2)m))]
= s* ((hf )(m))

So hf ∈ SHom(M, N), that is, the H-action is well defined. It is easy to see that SHom(M, N)
is a left H-module. For s′ ∈ S, m ∈ M and f ∈ SHom(M, N) we have
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(s* f )(s′*m) = f [(s′*m)( s]
= f [s′* (m( s)]
= s′* ( f (m( s))
= s′* ((s* f )(m))

So (s* f ) ∈ SHom(M, N), that is, the left S-action is well defined. It is easy to see that
SHom(M, N) is a left S-module.
We have for all f ∈ SHom(M, N), s ∈ S,h ∈ H, and m ∈ M,

[(h1.s)* (h2 f )](m) = (h2 f )(m( (h1.s))
= (h1 f )(m( (h2.s))
= h11( f [SH(h12)(m( (h2.s)])
= h1( f [SH(h2)(m( (h3.s)])
= h1( f [(SH(h2)1m)( (SH(h2)2(h3.s))])
= h1( f [(SH(h22)m)( ((SH(h21)h3).s)])
= h1( f [(SH(h3)m)( ((SH(h2)h4).s)])
= h1( f [(SH(h2)m)( ((SH(h3)h4).s)])
= h1( f [(SH(h2)m)( ((ε(h3)1H).s)])
= h1( f [(SH(h2)m)( s])
= h1[(s* f )(SH(h2)m)]
= [h(s* f )](m)

and (14) is satisfied. Therefore SHom(M, N) is a left S#H-module.

(ii) When M is a finitely generated projective left S-module,

SHom(M, N)⊗H ∼= SHom(M, N ⊗H),

so SHom(M, N) becomes an H-comodule with the given coaction. We defined ρ( f ) as in
the proof of Lemma 2.2.2. Indeed: for all f ∈ SHom(M, N), s ∈ S, and m ∈ M, we have

f0(s*m)⊗ f1 = f ((s*m)0)0 ⊗ f ((s*m)1)1SH((s*m)1)
= f (s0 *m0)0 ⊗ f (s0 *m0)1SH(s1m1)
= (s0 * f (m0))0 ⊗ (s0 * f (m0))1SH(s1m1)
= (s00 * f (m0)0)⊗ s01 f (m0)1SH(m1)SH(s1)
= (s00 * f (m0)0)⊗ f (m0)1SH(m1)s01SH(s1)
= (s0 * f (m0)0)⊗ f (m0)1SH(m1)ε(s1)
= (s* f (m0)0)⊗ f (m0)1SH(m1)
= (s* ( f0(m)))⊗ f1
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So f0 ∈ SHom(M, N), that is, the right H-coaction is well defined. It is easy to see that
SHom(M, N) is a right H-comodule. We have

[(s0 * f0)(m)]⊗ s1 f1 = [ f0(m( s0)]⊗ s1 f1
= [ f ((m( s0)0)]0 ⊗ s1[ f ((m( s0)0)]1SH((m( s0)1)
= [ f ((m( s0)0)]0 ⊗ [ f ((m( s0)0)]1SH((m( s0)1)s1
= [ f (m0 ( s00)]0 ⊗ [ f (m0 ( s00)]1SH(m1s01)s1
= [ f (m0 ( s0)]0 ⊗ [ f (m0 ( s0)]1SH(s11)SH(m1)s12
= [ f (m0 ( s0)]0 ⊗ [ f (m0 ( s0)]1SH(m1)SH(s11)s12
= [ f (m0 ( s0)]0 ⊗ [ f (m0 ( s0)]1SH(m1)ε(s1)
= [ f (m0 ( s)]0 ⊗ [ f (m0 ( s)]1SH(m1)
= [(s* f )(m0)]0 ⊗ [(s* f )(m0)]1SH(m1)
= (s* f )0(m)⊗ (s* f )1

for all f ∈ SHom(M, N), s ∈ S, and m ∈ M, and so the equation (2.1.8) is satisfied.Therefore
SHom(M, N) is a right H-comodule. For all f ∈ SHom(M, N),h ∈ H, and m ∈ M, we have

(hf )0(m)⊗ (hf )1 = (hf0)(m)⊗ f1, see Lemma 2.2.2 above.

ä
Lemma 2.2.4. Let N,P and Q be (S,H)-dimodules.

(i) If P is finitely generated projective as a right S-module, then we have an R-module iso-
morphism

S#H HomH(N⊗̃SP,Q)∼= S#H HomH(N,HomS(P,Q));

(ii) if P is finitely generated projective as a left S-module, then we have an R-module isomor-
phism

S#H HomH(P⊗̃S N,Q)∼= S#H HomH(N,SHom(P,Q)).

Proof.

(i) We consider the R-linear map

φ : S#H HomH(N⊗̃SP,Q)→ S#H HomH(N,HomS(P,Q))

given by φ( f )(n)(p) = f (n⊗̃p). Let f be an element of S#H HomH(N⊗̃SP,Q). For all n ∈
N, p ∈ P, and s ∈ S, we have

φ( f )(n)(p( s) = f (n⊗̃(p( s))
= f ((n⊗̃p)( s)
= f ((n⊗̃p)1.s* (n⊗̃p)0)
= ((n⊗̃p)1.s)* f ((n⊗̃p)0)
= ( f (n⊗̃p)1.s)* f (n⊗̃p)0
= f (n⊗̃p)( s
= [φ( f )(n)(p)]( s
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So φ( f )(n)(p) is right S-linear. We also have:

[φ( f )(s* n)](p)= f [(s* n)⊗̃p]= f [s* (n⊗̃p)]= s* [ f (n⊗̃p)]= s* [φ( f )(n)](p).

So φ( f ) is left S-linear. Let h ∈ H,we have :

φ( f )(hn)(p) = f [(hn)⊗̃p]
= f [(h1ε(h2)n)⊗̃p]
= f [(h1n)⊗̃ε(h2)p]
= f [(h1n)⊗̃ε(h2)1H p]
= f [(h1n)⊗̃h21SH(h22)p]
= f [(h11n)⊗̃h12SH(h2)p]
= f [h1(n⊗̃SH(h2)p)]
= h1[ f (n⊗̃SH(h2)p)]
= h1[φ( f )(n)(SH(h2)p)]
= [h(φ( f )(n))](p),

So, φ( f ) is left H-linear.Therefore, φ( f ) is S#H-linear.

Since f is a right H-linear map, we have:

[φ( f )(n)]0(p)⊗ [φ( f )(n)]1 = [φ( f )(n)(p0)]0 ⊗ [φ( f )(n)(p0)]1SH(p1)
= [ f (n⊗̃p0)]0 ⊗ [ f (n⊗̃p0)]1SH(p1)
= f ((n⊗̃p0)0)⊗ (n⊗̃p0)1SH(p1)
= f (n0⊗̃p00)⊗n1 p01SH(p1)
= f (n0⊗̃p0)⊗n1 p11SH(p12)
= f (n0⊗̃p0)⊗n1ε(p1)
= f (n0⊗̃p0ε(p1))⊗n1
= f (n0⊗̃p)⊗n1
=φ( f )(n0)(p)⊗n1.

We deduce that [φ( f )(n)]0 ⊗ [φ( f )(n)]1 = [φ( f )(n0)]⊗n1, that is, φ( f ) is right H-colinear.
It follows taht φ is well defined.
Let us consider the R-linear map

ψ : S#H HomH(N,HomS(P,Q))→ S#H HomH(N⊗̃SP,Q)

defined by ψ(g)(n⊗̃p) = g(n)(p), for all g ∈ S#H HomH(N,HomS(P,Q)),n ∈ N, and p ∈ P.
for h ∈ H, we have:
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ψ(g)(h(n⊗̃p)) =ψ(g)(h1n⊗̃h2 p)
= g(h1n)(h2 p)
= [h1(g(n))](h2 p)
= h11[g(n)(SH(h12)h2 p)]
= h1[g(n)(SH(h21)h22 p)]
= h1[g(n)(ε(h2)p)]
= h[g(n)(p)]
= h(ψ(g)(n⊗̃p),

so ψ(g) is left H-linear. Let s ∈ S, we have:

ψ(g)[s* (n⊗̃p)] =ψ(g)[(s* n)⊗̃p]
= g(s* n)(p)
= [s* (g(n))](p)
= s* [g(n)(p)]
= s* [ψ(g)(n⊗̃p)],

so ψ(g) is left S-linear. Therefore ψ(g) is S#H-linear. Since g is a right H-colinear map,
we have:

[ψ(g)(n⊗̃p)]0 ⊗ [ψ(g)(n⊗̃p)]1 = [g(n)(p)]0 ⊗ [g(n)(p)]1
= [g(n)(p0)]0 ⊗ [g(n)(p0)]1ε(p1)
= [g(n)(p0)]0 ⊗ [g(n)(p0)]1SH(p11)p12
= [g(n)(p00)]0 ⊗ [g(n)(p00)]1SH(p01)p1
= [g(n)0(p0)]⊗ g(n)1 p1
= [g(n0)(p0)]⊗n1 p1
= [ψ(g)(n0⊗̃p0)]⊗n1 p1
= [ψ(g)((n⊗̃p)0)]⊗ (n⊗̃p)1.

We deduce that ψ(g) is right H-colinear. It follows that ψ is well defined.

Finally we have, for all f ∈ S#H HomH(N⊗̃SP,Q), g ∈ S#H HomH(N,HomS(P,Q)),
n ∈ N, and p ∈ P,

[(φ◦ψ)(g)](n)(p) =ψ(g)(n⊗̃p) = g(n)(p)
and

[(ψ◦φ)( f )](n⊗̃p) =φ( f )(n)(p) = f (n⊗̃p).

So φ and ψ are inverse of each other.
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(ii) Let f be an element of S#H HomH(P⊗̃S N,Q). We consider the R-linear map

φ : S#H HomH(P⊗̃S N,Q)−→ S#H HomH(N,SHom(P,Q))

defined by φ( f )(n)(p)= f (p⊗̃n). We have for all n ∈ N, p ∈ P, and s ∈ S,

φ( f )(n)(s* p)= f ((s* p)⊗̃n)= f (s* (p⊗̃n))= s* ( f (p⊗̃n))= s* [φ( f )(n)(p)]

So φ( f )(n) is S-linear. For all f ∈ S#H HomH(N⊗̃SP,Q),n ∈ N, p ∈ P, and s ∈ S, we have:

[φ( f )(s* n)](p) = f (p⊗̃(s* n))
= f (p⊗̃(n0 ( SH(n1).s))
= f ((p⊗̃n0)( (SH(n1).s))
= f [((p⊗̃n0)1SH(n1).s)* (p⊗̃n0)0]
= f [((p1n01)SH(n1).s)* (p0⊗̃n00)]
= f [(p1n01SH(n1)).s)* (p0⊗̃n00)]
= f [((p1n11SH(n12)).s)* (p0⊗̃n0)]
= f [((p1ε(n1)).s)* (p0⊗̃n0)]
= f [(p1.s)* (p0⊗̃n0ε(n1))]
= f [((p1.s)* p0)⊗̃n]
= f [((p( s)⊗̃n]
=φ( f )(n)(p( s)
= [s*φ( f )(n)](p).

So φ( f ) is left S-linear. Let h ∈ H, we have

φ( f )(hn)(p) = f [p⊗̃(hn)]
= f [ε(h1)p⊗̃h2n]
= f [h11SH(h12)p⊗̃h2n]
= f [h11SH(h2)p⊗̃h12n]
= f [h1(SH(h2)p⊗̃n)]
= h1[ f (SH(h2)p⊗̃n)]
= h1[φ( f )(n)(SH(h2)p)]
= [h(φ( f )(n))](p).

So φ( f ) is left H-linear.

Therefore φ( f ) is S#H-linear. Since f is left H-colinear, we have

[φ( f )(n)]0(p)⊗ [φ( f )(n)]1 = [(φ( f )(n))(p0)]0 ⊗ [(φ( f )(n))(p0)]1SH(p1)
= [ f (p0⊗̃n]0 ⊗ [ f (p0⊗̃n]1SH(p1)
= f [(p0⊗̃n)0]⊗ (p0⊗̃n)1SH(p1)
= f (p00⊗̃n0)⊗n1 p01SH(p1)
= f (p0⊗̃n0)⊗n1ε(p1)
= f (p⊗̃n0)⊗n1
=φ( f )(n0)(p)⊗n1.
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We deduce that [φ( f )(n)]0 ⊗ [φ( f )(n)]1 =φ( f )(n0)⊗n1, that is, φ( f ) is right H-colinear. It
follows that φ is well defined.
Let g be an element of S#H HomH(N,SHom(P,Q)). We consider now the R-linear map

ψ : S#H HomH(N,SHom(P,Q))−→ S#H HomH(P⊗̃S N,Q),

defined by
ψ(g)(p⊗̃n)= g(n)(p), for all p ∈ P,n ∈ N.

We have;

ψ(g)[h(p⊗̃n)] =ψ(g)[h1 p⊗̃h2n)]
= g(h2n)(h1 p)
= g(h1n)(h2 p)
= h11[(g(n))(SH(h12)h2 p)]
= h1[(g(n))(SH(h21)h22 p)]
= h1[g(n)(ε(h2)p)]
= h[g(n)(p)] = h[ψ(g)(p⊗̃n)],

so ψ(g) is left H-linear. Let s ∈ S, we have

ψ(g)[s* (p⊗̃n)]=ψ(g)[(s* p)⊗̃n]= g(n)(s* p)= s* [g(n)(p)]= s* [ψ(g)(p⊗̃n)]

so ψ(g) is left S-linear.

Since g is right H-colinear. For all p ∈ P,n ∈ N, we have:

[ψ(g)(p⊗̃n)]0 ⊗ [ψ(g)(p⊗̃n)]1 = [g(n)(p)]0 ⊗ [g(n)(p)]1
= [g(n)(p0)]0 ⊗ [g(n)(p0)]1ε(p1)
= [g(n)(p0)]0 ⊗ [g(n)(p0)]1SH(p1)p2
= [g(n)(p00)]0 ⊗ [g(n)(p00)]1SH(p01)p1
= [g(n)0(p0)]⊗ [g(n)1]p1
= [g(n0)(p0)]⊗ (n1 p1)
= [ψ(g)(p0⊗̃n0)]⊗ (n1 p1)
= [ψ(g)((p⊗̃n)0)]⊗ (p⊗̃n)1.

We deduce that ψ(g) is right H-colinear. It follows that ψ is well-defined. It is easy to
see that φ and ψ are inverse of each other. We have

[(φ◦ψ)(g)](n)(p)=ψ(g)(p⊗̃n)= g(n)(p)

and
[(ψ◦φ)( f )](p⊗̃n)=φ( f )(n)(p)= f (p⊗̃n),

for all n ∈ N, p ∈ P, f ∈ S#H HomH(N⊗̃SP,Q), and g ∈ S#H HomH(N,SHom(P,Q)).

The maps φ and ψ are inverse of each other.
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ä

From Lemma 2.2.4 (i), we deduce that the functor HomS(P,−) defined from SDH to SDH

with P finitely generated projective as a right S-module is right adjoint to the functor −⊗̃SP
defined from SDH to SDH . In the notation of [59], HomS(P,Q) = [P,Q]. It also follows from
Lemma 2.2.4 (i), that if N and P are projective as right S-modules, then N⊗̃SP is projective as
a right S-module.

From Lemma 2.2.4 (ii), we deduce that the functor SHom(P,−) defined from SDH to SDH

with P finitely generated projective as a left S-module is right adjoint to the functor P⊗̃S−
defined from SDH to SDH . In the notation of [59], SHom(P,Q) = {P,Q}. It also follows from
Lemma 2.2.4 (ii) that if N and P are projective as left S-modules, then P⊗̃S N is projective as
a left S-module.

The results of the following lemma are useful for some computations.

Lemma 2.2.5. Let M, N be (S,H)-dimodules.

(i) If M is finitely generated projective as a right S-module, then

( f ( s)(m)= f (s*m), (2.2.16)

for all f ∈ HomS(M, N),m ∈ M, and s ∈ S.

(ii) If M is finitely generated projective as a left S-module, then

( f ( s)(m)= f (m)( s, (2.2.17)

for all f ∈ SHom(M, N),m ∈ M, and s ∈ S.

Proof.

(i) For all f ∈ HomS(M, N),m ∈ M, and s ∈ S, we have:

f (s*m) = f (m0 ( SH(m1).s)
= f (m0)( SH(m1).s
= ( f (m0)1SH(m1).s)* ( f (m0)0)
= ( f1.s)* ( f0(m))
= ( f1.s* f0)(m)
= ( f ( s)(m).

(ii) For all f ∈ SHom(M, N),m ∈ M, and s ∈ S, we have:

Brauer groups in some braided monoidal categories C. L. NANGO ©UASZ/UFR-ST/LMA/Hopf Algebra, 2021



CHAPTER 2. A BRAUER-CLIFFORD-LONG GROUP FOR THE CATEGORY OF DYSLECTIC (S,H)-DIMODULE ALGEBRAS 43

( f ( s)(m) = ( f1.s* f0)(m)
= ( f1.s)* f0(m)
= [( f (m0)1SH(m)1).s]* f (m0)0
= f (m0)00 ( SH( f (m0)01)[( f (m0)1SH(m)1).s]
= f00(m)( SH( f01)( f1.s)
= f0(m)( SH( f11)( f12.s)
= f0(m)( (SH( f11) f12).s
= f0(m)( ε( f1)s
= ( f0ε( f1))(m)( s
= f (m)( s.

ä

From Sections 3 to 6, H is a commutative and cocommutative Hopf algebra and S is an
H-commutative H-dimodule algebra.

2.3 The category of dyslectic (S,H)-dimodules

Our objective for this section is to define the subcategory of dyslectic (S,H)-dimodules. Note
that an (S,H)-dimodule is just a left S-module in the braided monoidal category DH .

An object M of SDH is dyslectic if hM ◦γM,S ◦γS,M = hM , where hM : S⊗M → M denotes the
left action of S on M [50] . It follows that an object M of SDH is dyslectic if and only if

s*m = ((s1.m)1s0)* (s1m)0. (2.3.1)

In our context, that means
s*m = (m1.s0)* (s1m0). (2.3.2)

Clearly, S is a dyslectic (S,H)-dimodule, and every H-dimodule can be regarded as a dyslectic
(R,H)-dimodule. A dyslectic (S,H)-dimodule homomorphism is an (S,H)-dimodule homomor-
phism between dyslectic (S,H)-dimodules. Let M be an (S,H)-dimodule and let us consider
the condition

s*m = (s1m)( s0, (2.3.3)

which is equivalent to the equation

m( s = s0 * (SH(s1)m). (2.3.4)

Lemma 2.3.1. (i) Let N be an (S,H)-dimodule. Then the condition (2.3.3) is satisfied for N
if and only if the braiding map γM,N : M⊗̃N → N⊗̃M induces a well-defined map denoted
again γM,N : M⊗̃S N → N⊗̃S M, defined by

γM,N (m⊗̃Sn)= m1n⊗̃Sm0,

for all M in SDH .
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(ii) Let M be an (S,H)-dimodule. Then the condition (2.3.4) is satisfied for M if and only if
the braiding map γ−1

M,N
: M⊗̃N → N⊗̃M induces a well-defined map denoted again γ−1

M,N
:

M⊗̃S N → N⊗̃S M, defined by

γ−1
M,N

(m⊗̃Sn)= n0⊗̃SSH(n1)m,

for all N in SDH .

Proof.

(i) Let m ∈ M,n ∈ N and s ∈ S. If (2.3.3) is satisfied for N, then

γM,N ((m( s)⊗̃n) = γM,N ((m1s*m0)⊗̃n)
= (m1s*m0)1n⊗̃(m1s*m0)0
= ((m1s)1m01n)⊗̃((m1s)0 *m00)
= ((s1m01)n)⊗̃(m1s0 *m00)
= [((s1m01)n)( (m1.s)]⊗̃m00
= [((s1m11)n)( (m12.s)]⊗̃m0
= [m1((s1n)( s0)]⊗̃m0
(2.3.3)= (m1(s* n))⊗̃m0
= γM,N (m⊗̃(s* n)).

So γM,N is well defined. If γM,N is well defined for all M in SDH , then γS,N is well defined.
Let n ∈ N and s ∈ S. We have

γS,N ((1S ( s)⊗̃n)= γS,N (1S⊗̃(s* n)).

We also have

γS,N ((1S ( s)⊗̃n) = ((1S ( s)1n)⊗̃(1S ( s)0
= (1H s1n)⊗̃(1S ( s0)
= ((s1n)⊗̃1S)( s0
= ((s1n)( s0)⊗̃1S

and γS,N (1S⊗̃(s* n))= 1H(s* n)⊗̃1S = (s* n)⊗̃1S.

We deduce that ((s1n)( s0)⊗̃1S = (s* n)⊗̃1S

hence s* n = (s1n)( s0. So (2.3.3) is satisfied for N.

(ii) For all m ∈ M,n ∈ N and s ∈ S, we have:
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γ−1
M,N

((m( s)⊗̃n) = n0⊗̃(SH(n1)(m( s))
(2.3.4)= n0⊗̃(SH(n1)(s0 * (SH(s1)m)),
= n0⊗̃[(SH(n1)1.s0)* (SH(n1)2(SH(s1)m))]
= n0⊗̃[(SH(n2).s0)* (SH(n1)(SH(s1)m))]
= n0⊗̃[(SH(n1).s0)* (SH(n2)(SH(s1)m))]
= [n0 ( (SH(n1).s0)]⊗̃(SH(n2)(SH(s1)m))
= [n00 ( (SH(n01).s0)]⊗̃(SH(n1)(SH(s1)m))
= (s0 * n0)⊗̃(SH(s1n1)m)
= (s* n)0⊗̃(SH((s* n)1)m)
= γ−1

M,N
(m⊗̃(s* n)).

So γ−1
M,N

is well defined.
If γ−1

M,N
is well defined, then γ−1

M,S
is well defined. For all m ∈ M and s ∈ S, we have:

γ−1
M,S

(m⊗̃(s* 1S))= γ−1
M,S

((m( s)⊗̃1S).

We also have

γ−1
M,S

(m⊗̃(s* 1S)) = (s* 1S)0⊗̃(SH((s* 1S)1)m)
= (s0 * 1S)⊗̃(SH(s11H)m)
= s0 * (1S⊗̃(SH(s1)m))
= (1S⊗̃(SH(s1)m)0)( [SH((1S⊗̃(SH(s1)m)1).s0]
= (1S⊗̃(SH(s1)m0))( [SH(1H m1).s0]
= 1S⊗̃[(SH(s1)m0)( (SH(m1).s0)]
= 1S⊗̃[((SH(s1)m0)1(SH(m1).s0))* (SH(s1)m0)0]
= 1S⊗̃[(m01(SH(m1).s0))* (SH(s1)m00)]
= 1S⊗̃[((m11SH(m12)).s0)* (SH(s1)m0)]
= 1S⊗̃[(ε(m1)s0)* (SH(s1)m0)]
= 1S⊗̃[s0 * (SH(s1)m)]

and
γ−1

M,S
((m( s)⊗̃1S)= 1S⊗̃(SH(1H)(m( s))= 1S⊗̃(m( s).

So the condition (2.3.4) is satified for M.

ä

The following lemma provides an easiest necessary and sufficient condition to show that
an (S,H)-dimodule is dyslectic.

Lemma 2.3.2. Let M be an (S,H)-dimodule. Then M is dyslectic if and only if the condition
(2.3.3) is satisfied for M.

Proof. Assume the condition (2.3.3) is satisfied for M. Then we have

s*m = (s1m)( s0 = ((s1m)1.s0)* (s1m)0 = (m1.s0)* (s1m0),

and the condition (2.3.2) if satisfied for M, that is, M is dyslectic. Conversely, if M dyslectic,
then
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s*m = (m1.s0)* (s1m0)
= (s1m0)0 ( [SH((s1m0)1)(m1.s0)]
= (s1m00)( [SH(m01)(m1.s0)]
= (s1m)( s0,

and the condition (2.3.3) is satisfied for M.

ä

Since conditions (2.3.3) and (2.3.4) are equivalent, an (S,H)-dimodule M is dyslectic if and
only if the condition (2.3.4) is satisfied for M. However, we can prove this result directly as in
Lemma 2.3.2. We denote by D ys-SDH the category of dyslectic (S,H)-dimodules with dyslectic
(S,H)-dimodules homomorphisms; it is a full subcategory of SDH .

Lemma 2.3.3. Let M and N be dyslectic (S,H)-dimodules. Then M⊗̃S N is a dyslectic (S,H)-
dimodule.

Proof. Suppose M and N are dyslectic (S,H)-dimodules. Let m ∈ M,n ∈ N and s ∈ S. We
have

(m⊗̃n)( s = m⊗̃(n( s)
= m⊗̃(s0 * (SH(s1)n))
= (m( s0)⊗̃(SH(s1)n)
= (s00 * (SH(s01)m))⊗̃(SH(s1)n)
= s0 * ((SH(s11)m))⊗̃(SH(s12)n))
= s0 * ((SH(s1)2m))⊗̃(SH(s1)1n))
= s0 * ((SH(s1)1m))⊗̃(SH(s1)2n))
= s0 * (SH(s1)(m⊗̃n)).

So the condition (2.3.4) is satisfied for M⊗̃S N, and M⊗̃S N is dyslectic.

ä

Theorem 2.3.4. (D ys-SDH ,⊗̃S,S,γ) is a braided monoidal category.

Proof. Let M and N be dyslectic (S,H)-dimodules. Since M and N are dyslectic, we know
from Lemma 2.3.1 that γM,N and γ−1

M,N
are well defined. Let m ∈ M,n ∈ N and s ∈ S, we have

γM,N (s* (m⊗̃n)) = γM,N ((s*m)⊗̃n)
= ((s*m)1n)⊗̃(s*m)0
= ((s1m1)n)⊗̃(s0 *m0)
= ((s1m1)n( s0)⊗̃m0
= (s* (m1n))⊗̃m0
= s* ((m1n)⊗̃m0)
= s* γM,N (m⊗̃n),
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So γM,N left S-linear. It is clear that γM,N is left H-linear and H-colinear and γ−1
M,N

is its inverse.

ä

Since D ys-S DH is a braided monoidal category, by [23, Remark 4.12], every dyslectic (S,H)-
dimodule finitely generated projective as a right S-module is also finitely generated projective
as a left S-module.

Lemma 2.3.5. Let M and N be dyslectic (S,H)-dimodules finitely generated projective as a
right S-module. Then HomS(M, N) and SHom(M, N) are dyslectic (S,H)-dimodules.

Proof. Suppose M and N are dyslectic (S,H)-dimodules with M finitely generated projec-
tive as a right S-module. Let f ∈ HomS(M, N),m ∈ M,n ∈ N and s ∈ S. We have

( f ( s)(m) = f (s*m)
= f ((s1.m)( s0)
= f (s1.m)( s0
= s00 * [SH(s01)( f (s1.m))]
= s0 * [SH(s1)( f (s2.m))]
= s0 * [SH(s1)( f (S2

H(s2).m))]
= s0 * [SH(s1)( f (SH(SH(s2)).m)]
= s0 * [SH(s11)( f (SH(SH(s12)).m)]
= [s0 * (SH(s1) f )](m).

So condition (2.3.4) is satisfied, then HomS(M, N) is dyslectic.

Let f ∈ SHom(M, N),m ∈ M,n ∈ N and s ∈ S. We have

(s* f )(m) = f (m( s)
= f (s0 * (SH(s1)m))
= s0 * f (SH(s1)m)
= [s01.( f (SH(s1)m))]( s00
= [s11.( f (SH(s12)m))]( s0
= [(s1. f )(m)]( s0
= [(s1. f )( s0](m).

So condition (2.3.3) is satisfied, and SHom(M, N) is dyslectic.

ä

We deduce from Lemmas 2.2.4 (i), 2.3.3 and 2.3.5 that if P is finitely generated projective
as a right S-module, then the functor HomS(P,−) defined from D ys-SDH to D ys-SDH is right
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adjoint to the functor −⊗̃SP defined from D ys-SDH to D ys-SDH . Likewise, we deduce from
Lemmas 2.2.4 (ii), 2.3.3 and 2.3.5 that if P is finitely generated projective as a left S-module,
then the functor SHom(P,−) defined from D ys-SDH to D ys-SDH is right adjoint to the functor
−⊗̃SP defined from D ys-SDH to D ys-SDH .
Since D ys-SDH is a braided monoidal category, by [23, Subsection 2.2], we have an isomor-
phism of dyslectic (S,H)-dimodules HomS(P,Q) = SHom(P,Q) for all objects P,Q ∈ D ys-SDH

with P finitely generated projective as a left and as a right S-module. More precisely, this
isomorphism is the map

φ : HomS(P,Q)→ SHom(P,Q) defined by φ( f )(p)= (p1. f )(p0).

Note that in D ys-SDH , if N and P are finitely generated projective as right S-modules, then
N⊗̃SP is finitely generated projective as a right S-module. We know from [59] that there is a
Brauer group for the braided monoidal category D ys-SDH . Most of the remainder of the paper
is concerned with developing the details of the ingredients necessary to define this Brauer
group, in a precise way.

2.4 Dyslectic (S,H)-dimodule algebras

A dyslectic (S,H)-dimodule algebra is an algebra in the braided monoidal category D ys-SDH ,
that is, an object A of D ys-SDH such that there are two dyslectic (S,H)-dimodule homomor-
phisms π : A⊗̃S A → A and µ : S → A satisfying the associativity and the unitary conditions of
usual algebras.
Since S is H-commutative, S is a dyslectic (S,H)-dimodule algebra. Note that a dyslectic
(S,H)-dimodule algebra is an algebra in the monoidal category D ys-SDH which is dyslectic as
an (S,H)-dimodule. Every H-dimodule algebra is a dyslectic (R,H)-dimodule algebra.
A dyslectic (S,H)-dimodule algebra homomorphism is a dyslectic (S,H)-dimodule homomor-
phism which is compatible with the product and is a unitary algebra homomorphism.

Lemma 2.4.1. Assume that M is a dyslectic (S,H)-dimodule that is finitely generated projective
as a right S-module. Then

(i) EndS(M) is a dyslectic (S,H)-dimodule algebra: the product map is defined from EndS(M)⊗̃SEndS(M)
to EndS(M) by π( f ⊗̃g)= f ◦ g, for all f , g ∈ EndS(M) and the unit map µ : S → EndS(M)
is defined by µ(s)(m)= s*m.

(ii) SEnd(M) is a dyslectic (S,H)-dimodule algebra: the product map is defined by π( f ⊗̃g)=
f g = g ◦ f , for all f , g ∈ SEnd(M) and the unit map µ : S → SEnd(M) is defined by
µ(s)(m)= s*m.

Proof.

(i) By Lemma 2.3.5 (i), EndS(M) is a dyslectic (S,H)-dimodule. For all f , g ∈ EndS(M), s ∈ S
and m ∈ M, we have
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[π(( f ( s)⊗̃g)](m) = [( f ( s)◦ g](m)
= ( f ( s)(g(m))
= f (s* (g(m))
= f ((s* g)(m))
= ( f ◦ (s* g))(m)
= [π( f ⊗̃(s* g))](m),

so π is well defined. Clearly π is left S-linear and H-linear.
For all f , g ∈ EndS(M) and m ∈ M, we have

[π( f ⊗̃g)]0(m)⊗ [π( f ⊗̃g)]1 = ( f ◦ g)0(m)⊗ ( f ◦ g)1
= [( f ◦ g)(m0)]0 ⊗ [( f ◦ g)(m0)]1SH(m1)
= [ f (g(m0))]0 ⊗ [ f (g(m0))]1SH(m1)
= [ f (g(m0)0ε(g(m0)1))]0 ⊗ [ f (g(m0)0ε(g(m0)1))]1SH(m1)
= [ f (g(m0)0)]0 ⊗ [ f (g(m0)0)]1ε(g(m0)1)SH(m1)
= [ f (g(m0)0)]0 ⊗ [ f (g(m0)0)]1SH(g(m0)1)g(m0)2SH(m1)
= [ f (g(m0)00)]0 ⊗ [ f (g(m0)00)]1SH(g(m0)01)g(m0)1SH(m1)
= f0(g(m0)0)⊗ f1 g(m0)1SH(m1)
= f0(g0(m))⊗ f1 g1
= ( f0 ◦ g0)(m)⊗ f1 g1
= [π( f0⊗̃g0)](m)⊗ f1 g1.

So π is H-colinear.
It is easy to see that µ is well defined, left S-linear and H-linear. Let us show that µ is
H-colinear. For all m ∈ M and s ∈ S, we have

µ(s)0(m)⊗µ(s)1 = [µ(s)(m0)]0 ⊗ [µ(s)(m0)]1SH(m1)
= (s*m0)0 ⊗ (s*m0)1SH(m1)
= (s0 *m00)⊗ (s1m01)SH(m1)
= (s0 *m0)⊗ s1ε(m1)
= (s0 *m)⊗ s1
=µ(s0)(m)⊗ s1.

So µ is H-colinear. The identity element idM of EndS(M) is H-invariant and H-coinvariant.
It is well known that the composition law is associative. Then EndS(M) is an (S,H)-
dimodule algebra. Therefore EndS(M) is a dyslectic (S,H)-dimodule algebra.

ä

Let A be a dyslectic (S,H)-dimodule algebra. The H-opposite algebra Ā of A is defined as
follows: Ā = A as a dyslectic (S,H)-dimodule, but with multiplication mA ◦γ, where mA is the
multiplication of A . In other words,

āā′ = (a1.a′)a0, for all a,a′ ∈ A. (2.4.1)
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The action of S on Ā is given by s* ā = s* a, the H- action by h.ā = h.a, and the H-coaction by
(ā)0⊗(ā)1 = ā0⊗a1, for all a ∈ A, h ∈ H and s ∈ S. If the action of H or the coaction of H is trivial,
then Ā = Aop, the ordinary opposite algebra of A. Note that S̄ ∼= S when S is H-commutative.

Lemma 2.4.2. Suppose that A is a dyslectic (S,H)-dimodule algebra. Then Ā is a dyslectic
(S,H)-dimodule algebra.

Proof. We need to show that the action of S is compatible with the product. Let s ∈ S,a,b ∈
A. Then

(ā( s)b̄ = (a( s) b̄
= ((a( s)1.b)(a( s)0
= ((a1s1).b)(a0 ( s0)
= [((a1s1).b)a0]( s0

= [(a1(s1.b))a0]( s0

= ā[(s1.b)( s0]
= ā[(s1.b̄)( s0]
= ā(s* b̄),

so the multiplication in Ā is well defined. On the other hand, we have :

(s* ā)b̄ = (s* a) b̄
= ((s* a)1.b)(s* a)0
= ((s1a1).b)(s0 * a0)
= (s1(a1.b))( s0)a0

= (s* (a1.b))a0

= s* ((a1.b)a0)
= s* ((a1.b)a0)
= s* (āb̄).

So the multiplication in Ā is S-linear. For all a,b ∈ A and h ∈ H, we have h.(āb̄)= (h1.ā)(h2.b̄)
and (āb̄)0⊗(āb̄)1 = ā0b̄0⊗ ā1b̄1, that is, the multiplication in Ā is H-linear and H-colinear. Fur-
thermore, H acts and coacts trivially on the identity element of Ā.

ä

If A and B are dyslectic (S,H)-dimodule algebras, we define a new multiplication in A⊗̃SB
by

(A⊗̃SB)⊗̃S(A⊗̃SB)
1⊗γ⊗1−→ (A⊗̃S A)⊗̃S(B⊗̃SB)

mA⊗mB−→ A⊗̃SB.

A⊗̃SB with this new multiplication will be denoted A#SB, in other words,

(a#b)(a′#b′)= a(b1.a′)#b0b′, for all a,a′ ∈ A; b,b′ ∈ B. (2.4.2)

A#SB is called the braided product of A and B.
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Proposition 2.4.3. Let A, B and C be dyslectic (S,H)-dimodule algebras. Then

(i) A#SB is a dyslectic (S,H)-dimodule algebra whose identity element is 1A#1B. The actions
of H and S are respectively given by

h.(a#b)= (h1.a)#(h2.b), and s* (a#b)= (s* a)#b (2.4.3)

for all h ∈ H,a ∈ A,b ∈ B, s ∈ S and the coaction of H is given by

(a#b)0 ⊗ (a#b)1 = (a0#b0)⊗a1b1, ∀a ∈ A,b ∈ B. (2.4.4)

(ii) The canonical maps

λA : A −→ A#SB
a 7−→ a#1B

and λB : B −→ A#SB
b 7−→ 1A#b,

are homomorphisms of dyslectic (S,H)-dimodule algebras.

(iii) The canonical maps

λA : A −→ A#SS
a 7−→ a#1S

and λ′
A : A −→ S#S A

a 7−→ 1S#a,

are isomorphisms of dyslectic (S,H)-dimodule algebras.

(iv) The map
φ : (A#SB)#SC → A#S(B#SC), given by φ((a#b)#c)= a#(b#c)

for all a ∈ A,b ∈ B and c ∈ C is an isomorphism of dyslectic (S,H)-dimodule algebras.

(v) The map
φ : B̄#S Ā → A#SB given by φ(b̄#ā)= (b1.a)#b0,

for all a ∈ A,b ∈ B, is an isomorphism of dyslectic (S,H)-dimodule algebras.

Proof. Asume A, B and C be dyslectic (S,H)-dimodule algebras.

(i) A#SB is isomorphic to the dyslectic (S,H)-dimodule A⊗̃SB. Let h ∈ H, s ∈ S,a,a′ ∈ A and
b,b′ ∈ B, we have
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h.[(a#b)(a′#b′)] = h[a(b1.a′)#(b0b′)]
= h1.(a(b1.a′))#(h2.(b0b′))
= [(h11.a)(h12b1.a′)]#[(h21.b0)(h22.b′)]
= [(h1.a)(h2b1.a′)]#[(h3.b0)(h4.b′)]
= [(h1.a)(b1h2.a′)]#[(h3.b0)(h4.b′)]
= [(h1.a)((h3.b)1h2.a′)]#[(h3.b)0(h4.b′)]
= [(h1.a)#(h3.b)][(h2.a′)#(h4.b′)]
= [(h1.a)#(h2.b)][(h3.a′)#(h4.b′)]
= [(h11.a)#(h12.b)][(h21.a′)#(h22.b′)]
= [h1.(a#b)][h2.(a′#b′)].

Then the algebra map is H-linear. For all a,a′ ∈ A, b,b′ ∈ B, we have:

π[(a#b)⊗̃(a′#b′)]0 ⊗π[(a#b)⊗̃(a′#b′)]1
= [(a#b)(a′#b′)]0 ⊗ [(a#b)(a′#b′)]1
= [a(b1.a′)#b0b′]0 ⊗ [a(b1.a′)#b0b′]1
= [a0(b1.a′

0)#b00b′
0]⊗ (a1a′

1b01b′
1)

= [a0(b01.a′
0)#b00b′

0]⊗ (a1a′
1b1b′

1)
= [(a0#b0)(a′

0#b′
0)]⊗ [(a1b1)(a′

1b′
1)]

= [π((a0#b0)⊗̃(a′
0#b′

0))]⊗ [(a1b1)(a′
1b′

1)]
=π[(a#b)0⊗̃(a′#b′)0]⊗ [(a#b)1(a′#b′)1],

therefore, the algebra map is H-colinear. We also have:

[s* (1A#1B)]0 ⊗ [s* (1A#1B)]1 = [s0 * (1A#1B)]⊗ (s11H),

this means that the unit map is H-colinear. It is easy to see that the unit map is H-linear
and S-linear. Therefore A#SB is a dyslectic (S,H)-dimodule algebra.

(ii) Let a ∈ A, we have:

λA(h.a) = (h.a)#1B
= [h1ε(h2).a]#1B
= (h1.a)#ε(h2)1B
= (h1.a)#(h2.1B)
= h(a#1B)
= hλA(a),

for every h ∈ H. That is λA is left H-linear. For all s ∈ S, we have:

λA(s* a)= (s* a)#1B = s* (a#1B)= s*λA(a),

so λA is left S-linear. For all a,a′ ∈ A,
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λA(a)λA(a′) = (a#1B)(a′#1B)
= a[(1B)1.a′]#(1B)01B
= a[1H .a′]#1B1B
= (aa′)#1B
=λA(aa′),

then λA is an algebra map. Finally we have:

λA(a)0 ⊗λA(a)1 = (a#1B)0 ⊗ (a#1B)1
= (a0#1B)⊗a11H
=λA(a0)⊗a1,

then the map λA is a right H-colinear map.

We show in the same way that the map λB is left S-linear, left H-linear, right H-colinear
and

λB(bb′) = 1A#(bb′)
= 1A(ε(b1).1A)#b0b′

= (1A(b1.1A))#b0b′

= (1A#b)(1A#b′)
=λB(b)λB(b′), ∀b,b′ ∈ B,

that is, λB is an algebra map.

(iii) From (ii), λA and λ′
A are both algebras morphisms of dyslectic (S,H)-dimodule algebra.

Moreover, we have
λ−1

A : A#SS −→ A, a#s 7−→ a( s,

in fact,
λ−1

A [λA(a)]=λ−1
A (a#1S)= a( 1S = a, ∀a ∈ A

and

λA[λ−1
A (a#s)]=λ(a( s)= (a( s)#1S = a#(s* 1S)= a#s, ∀a ∈ A, s ∈ S.

For the inverse of λ′
A, we have

λ′−1
A : S#S A −→ A, s#a 7−→ s* a.

Then for all a ∈ A and s ∈ S,

λ′−1
A [λ′

A(a)]=λ′−1
A (1S#a)= 1S * a = a

and
λ′

A[λ′−1
A (s#a)]=λ′

A(s* a)= 1S#(s* a)= (1S ( s)#a = s#a.
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(iv) According to (i), (A#SB)#SC and A#S(B#SC) are dyslectic (S,H)-dimodule algebras. We
also know that the map φ is an isomorphism of dyslectic (S,H)-dimodules.

(v) Let a ∈ A and b ∈ B. For all s ∈ S, we have

φ[b̄#(s* ā)] =φ[b̄#(s* a)]
= b1.(s* a)#b0

= [(b1.s)* (b2.a)]#b0

= [(b1.s)1.(b2.a)( (b1.s)0]#b0

= [s1.(b2.a)( (b1.s0)]#b0

= s1.(b2.a)#[(b1.s0)* b0]
= s1.(b1.a)#(b0 ( s0)
= (b( s)1.a#(b( s)0
=φ[(b( s)#ā]
=φ[(b̄( s)#ā].

Then φ is well defined. For all s ∈ S, we have;

φ[s* (b̄#ā)] =φ[(s* b̄)#ā)]
= (s* b)1.a#(s* b)0
= (s1.b1).a#(s0 * b0)
= ((s1.b1).a( s0)#b0

= (s* (b1.a))#b0

= s* ((b1.a)#b0)
= s* (b1.a)#b0
= s*φ(b̄#ā),

and

φ(b̄#ā)0 ⊗φ(b̄#ā)1 = ((b1.a)#b0)0 ⊗ ((b1.a)#b0)1
= (b1.a)0#b00 ⊗ (b1.a)1b01

= (b1.a)0#b00 ⊗ (b1.a)1b01

= (b01.a0)#b00 ⊗a1b1
=φ(b̄0#ā0)⊗a1b1
=φ((b̄#ā)0)⊗ (b̄#ā)1.
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We see that φ is S-linear and H-colinear. It is easy to see that φ is H-linear and compat-
ible with the product. We also have

φ(1B̄#1Ā)= ((1B̄)1.1Ā)#(1B̄)0 = (1H .1Ā)#1B̄ = 1Ā#1B̄.

Consider the map ψ : A#SB → B̄#S Ā given by ψ(a#b)= b̄0#SH(b1).a, for all a ∈ A,b ∈ B.

Finally, for all a,a′ ∈ A and b,b′ ∈ B, we have

(φ◦ψ)(a#b)=φ(b̄0#SH(b1).a)= [b01(SH(b1).a))]#b00 = ε(b1)a#b0 = a#b

(ψ◦φ)(b̄′#ā′)=ψ(b′
1.a′#b′

0)= b̄′00# SH(b′
01)(b′

1.a′)= b̄′0# ε(b′
1)a′ = b̄′#ā′

Therefore φ is a bijection with inverse ψ.

ä

An (S,H)-dimodule is right faithfully projective if it is finitely generated projective as a
right S-module and the canonical map

ψ : HomS(P,S)⊗EndS (P) P −→ S; f ⊗̃p 7−→ f (p)

is an isomorphism.

We define in a similar way a left faithfully projective (S,H)-dimodule. An (S,H)-dimodule
is said to be faithfully projective if it is right and left faithfully projective. Since D ys-SDH is a
braided monoidal category, by [23], a dyslectic (S,H)-dimodule is right faithfully projective if
and only if it is left faithfully projective. So a dyslectic (S,H)-dimodule is faithfully projective
if it is right faithfully projective or left faithfully projective.
It follows from Lemma 2.4.1 that EndS(P) and SEnd(P) are dyslectic (S,H)-dimodule algebras
for any faithfully projective dyslectic (S,H)-dimodule P.
For a faithfully projective dyslectic (S,H)-dimodule M, we know that the left dual SHom(M,S)
of M and the right dual HomS(M,S) of M coincide in D ys-SDH : we will denote these duals
by M?, which we regard as dyslectic (S,H)-dimodules using Lemma 2.3.5. Note that M? is
faithfully projective.

Proposition 2.4.4. Let M be a faithfully projective dyslectic (S,H)-dimodule. Then

(i) EndS(M)∼= SEnd(M?) as dyslectic (S,H)-dimodule algebras;

(ii) SEnd(M)∼= EndS(M?) as dyslectic (S,H)-dimodule algebras;

(iii) EndS(M)∼= SEnd(M) as dyslectic (S,H)-dimodule algebras;
and
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(iv) SEnd(M)∼= EndS(M) as dyslectic (S,H)-dimodule algebras.

Proof.

(i) Let f ∈ EndS(M) and g ∈ M? = HomS(M,S). We consider the map φ : EndS(M) →
SEnd(M?) given by φ( f )(g) = g ◦ f . Since f and g are S-linear, φ( f )(g) ∈ M?. For all
m ∈ M and s ∈ S, we have

[φ( f )(s* g)](m) = [(s* g)◦ f ](m)
= (s* g)( f (m))
= s* [g( f (m))]
= s* [(g ◦ f )(m)]
= [s* (g ◦ f )](m)
= [s*φ( f )(g)](m),

so φ( f ) is left S-linear, that is φ( f ) ∈ SEnd(M?). Therefore φ( f ) is well defined.
Consider f ∈ EndS(M) and g ∈ M?. Clearly φ is left S-linear. For every m ∈ M, we have

[φ( f )0(g)](m)⊗φ( f )0(g)
= [φ( f )(g0)]0(m)⊗ [φ( f )(g0)]1SH(g1)
= (g0 ◦ f )0(m)⊗ (g0 ◦ f )1SH(g1)
= [(g0 ◦ f )(m0)]0 ⊗ [(g0 ◦ f )(m0)]1SH(g1)SH(m1)
= [g0( f (m0))]0 ⊗ [g0( f (m0))]1SH(g1)SH(m1)
= [g( f (m0)0)]00 ⊗ [g( f (m0)0)]01SH[[g( f (m0)1)]1SH( f (m0)1)]SH(m1)
= [g( f (m0)0)]00 ⊗ [g( f (m0)0)]01SH([g( f (m0)1)]1)S2

H( f (m0)1)SH(m1)
= g( f (m0)0)⊗ f (m0)1SH(m1)
= g( f0(m))⊗ f1
= [φ( f0)(g)](m)⊗ f1.

This means that φ is H-colinear. For all f , f ′ ∈ EndS(M) and g ∈ M?, we have

φ( f f ′)(g)= g ◦ ( f f ′)= (g ◦ f )◦ f ′ =φ( f ′)(g ◦ f )=φ( f ′)(φ( f )(g))= [φ( f )φ( f ′)](g).

So φ is an algebra map.
Let {m(i), f (i)} be dual bases for the S-modules M and M?, where m(i) ∈ M and f (i) ∈
M? = HomS(M,S). Then for every m ∈ M, we have m =∑

m(i) ( f (i)(m).
Define the map

ψ : SEnd(M?)→ EndS(M), by ψ(g)(m)=∑
m(i) ( [g( f (i))](m).
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Since m =∑
m(i) ( f (i)(m), we have

f ′(m)=∑
f ′(m(i)) f (i)(m)=∑

[ f ′(m(i))* f (i)](m), for every f ′ ∈ M? and m ∈ M.

So f ′ = ∑
f ′(m(i))* f (i). For every g ∈ SEnd(M?), we have g( f ′) = ∑

f ′(m(i))* [g( f (i))].
This proves that φ◦ψ is the identity map of SEnd(M?). In the similar way, we show that
ψ◦φ is the identity map of EndS(M). So the algebra map φ is a bijection with inverse
ψ.

(ii) The proof is similar to (i).

(iii) Define φ : EndS(M)→ SEnd(M) by φ( f̄ )(m)= (m1. f )(m0) for all m ∈ M and f ∈ EndS(M).
We know that φ is an isomorphism of dyslectic (S,H)-dimodules. Its inverse φ−1 : SEnd(M)→
EndS(M) is given by

φ−1( f )(m)= (SH(m1). f )(m0), for all m ∈ M, f ∈ SEnd(M).

Now let show that φ is an algebra map. For f , f ′ ∈ EndS(M) and m ∈ M, we have

φ( f̄ f̄ ′)(m) =φ(( f1. f ′) f0)(m)
= [m1.(( f1. f ′) f0)](m0)
= [((m1 f1). f ′)(m2. f0)](m0)
= ((m1 f1). f ′)[m2( f0(SH(m3)m0))]
= ((m1 f ((SH(m3)m0)0)1SH((SH(m3)m0)1)). f ′)[m2( f ((SH(m3)m0)0)0)]
= ((m1 f (SH(m3)m00)1SH(m01). f ′)[m2( f (SH(m3)m00)0)]
= ((SH(m11)m12 f (SH(m3)m0)1. f ′)[m2( f (SH(m3)m0)0)]
= (( f (SH(m2)m0)1. f ′)[m1( f (SH(m2)m0)0)]
= ((m1 f (SH(m2)m0)1. f ′)[(m1( f (SH(m2)m0))0]
=φ( f̄ ′)[m1 f (SH(m2)m0)]
=φ( f̄ ′)[(m1. f )(m0)]
=φ( f̄ ′)[φ( f̄ )(m)]
= [φ( f̄ )φ( f̄ ′)](m).

Hence, φ is an isomorphism of dyslectic (S,H)-dimodule algebras.

(iv) It can be proved like (iii).

ä

If M and N are faithfully projective dyslectic (S,H)-dimodules, then M⊗̃S N is a faithfully
projective dyslectic (S,H)-dimodule.
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Proposition 2.4.5. Let M and N be faithfully projective dyslectic (S,H)-dimodules. Then

EndS(M)#S EndS(N)∼= EndS(M⊗̃S N) and SEnd(M)#S SEnd(N)∼= SEnd(M⊗̃S N)

as dyslectic (S,H)-dimodule algebras.

Proof. Define the map φ : EndS(M)#S EndS(N)→ EndS(M⊗̃S N) by

φ( f #g)(m⊗̃n)= f (g1m)⊗̃g0(n), for all f ∈ EndS(M), g ∈ EndS(N),m ∈ M and n ∈ N.

It is clear that φ( f #g) and φ are well defined left H-linear maps. φ is an H-colinear map
since for all f ∈ EndS(M), g ∈ EndS(N),m ∈ M and n ∈ N, we have

φ( f #g)0(m⊗̃n)⊗φ( f #g)1
= [φ( f #g)((m⊗̃n)0)]0 ⊗ [φ( f #g)((m⊗̃n)0)]1SH((m⊗̃n)1)
= [φ( f #g)(m0⊗̃n0)]0 ⊗ [φ( f #g)(m0⊗̃n0)]1SH(m1n1)
= [ f (g1m0)⊗̃g0(n0)]0 ⊗ [ f (g1m0)⊗̃g0(n0)]1SH(m1n1)
= [ f [(g(n00)1SH(n01))m0]⊗̃g(n00)0]0 ⊗ [ f [(g(n00)1SH(n01))m0]⊗̃g(n00)0]1SH(m1n1)
= [ f [(g(n00)1SH(n01))m0]0⊗̃g(n00)00]⊗ [ f [(g(n00)1SH(n01))m0]1 g(n00)01]SH(m1)SH(n1)
= [ f [(g(n00)01SH(n01))m0]0⊗̃g(n00)00]⊗ [ f [(g(n00)01SH(n01))m0]1 g(n00)1]SH(m1)SH(n1)
= [ f [((g(n00)01SH(n01))m)0]0⊗̃g(n00)00]⊗ [ f [((g(n00)01SH(n01))m)0]1 g(n00)1]

×SH((g(n00)01SH(n01))m)1)SH(n1)
= [ f0[(g(n00)01SH(n01))m]⊗̃g(n00)00]⊗ f1 g(n00)1SH(n1)
= [ f0[(g(n0)01SH(n11))m]⊗̃g(n0)00]⊗ f1 g(n0)1SH(n12)
= [ f0[(g0(n0)1SH(n11))m]⊗̃g0(n0)0]⊗ f1 g1
= [ f0(g01m)⊗̃g00(n)]⊗ f1 g1
=φ( f0#g0)(m⊗̃n)⊗ f1 g1
=φ(( f #g)0)(m⊗̃n)⊗ ( f #g)1.

Now let us show that φ is an algebra map. We have

φ[( f #g)( f ′#g′)](m⊗̃n) =φ[ f (g1. f ′)#g0 g′](m⊗̃n)
= ( f (g1. f ′))[(g0 g′)1m]⊗̃(g0 g′)0(n)
= f [(g1. f ′)(g01 g′

1m)]⊗̃(g00 g′
0)(n)

= f [(g2. f ′)(g1 g′
1m)]⊗̃(g0 g′

0)(n)
= f [(g1. f ′)(g2 g′

1m)]⊗̃(g0 g′
0)(n)

= f [g11 f ′(SH(g12)g2 g′
1m)]⊗̃g0(g′

0(n))
= f [g1 f ′(g′

1m)]⊗̃g0(g′
0(n))

=φ( f #g)[ f ′(g′
1m)⊗̃g′

0(n)]
=φ( f #g)[φ( f ′#g′)(m⊗̃n)]
= [φ( f #g)φ( f ′#g′)](m⊗̃n)
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for all f ∈ EndS(M), g ∈ EndS(N),m ∈ M and n ∈ N. Then φ is a homomorphism of (S,H)-
dimodules algebras. Our assumptions imply that every element of EndS(M⊗̃S N) has the form
f ⊗̃g, for f ∈ EndS(M) and g ∈ EndS(N). Let define the map

ψ : EndS(M⊗̃S N)→ EndS(M)#SEndS(N), by ψ( f ⊗̃g)(m⊗̃n)= f (SH(g1)m)⊗̃g0(n).

φ is a bijection with inverse ψ. Therefore, φ is an isomorphism of dyslectic (S,H)-dimodule
algebras.

The proof of the second isomorphism follows from Proposition 2.4.4 (ii).

ä

Lemma 2.4.6. Let M be a faithfully projective dyslectic (S,H)-dimodule. Then

(i) M⊗̃S M? is a faithfully projective dyslectic (S,H)-dimodule algebra: the multiplication in
M⊗̃S M? is defined by

(m⊗̃ f )(m′⊗̃ f ′)= [m( f (m′)]⊗̃ f ′, for all m,m′ ∈ M, f , f ′ ∈ M?. (2.4.5)

(ii) The natural S-linear map φ : M⊗̃S M? ∼= EndS(M) defined by

φ(m⊗̃ f )(m′)= m( f (m′), for all m,m′ ∈ M, f ∈ M?,

is an isomorphism of dyslectic (S,H)-dimodule algebras.

Proof.

(i) We know that M⊗̃S M? is a faithfully projective dyslectic (S,H)-dimodule since M and
M? are faithfully projective dyslectic (S,H)-dimodules. Let s ∈ S, m,n ∈ M and f , g ∈ M?,
we have

[(m⊗̃ f )( s](n⊗̃g) = [m⊗̃( f ( s)](n⊗̃g)
= [m( ( f ( s)(n)]⊗̃g
= [m( f (s* n)]⊗̃g
= (m⊗̃ f )[(s* n)⊗̃g]
= (m⊗̃ f )[s* (n⊗̃g)],

then the multiplication of M⊗̃S M? is well defined. For all h ∈ H, m,n ∈ M and f , g ∈ M?,
we have
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[s* (m⊗̃ f )](n⊗̃g) = [(s*m)⊗̃ f ](n⊗̃g)
= [(s*m)( f (n)]⊗̃g
= [s* (m( f (n))]⊗̃g
= s* [(m( f (n))⊗̃g]
= s* [(m⊗̃ f )(n⊗̃g).,

We also have h[(m⊗̃ f )(n⊗̃g)]= [h1(m⊗̃ f )][h2(n⊗̃g)] and

[(m⊗̃ f )(n⊗̃g)]0 ⊗ [(m⊗̃ f )(n⊗̃g)]1 = [(m( f (n))⊗̃g]0 ⊗ [(m( f (n))⊗̃g]1
= [(m( f (n))0⊗̃g0]⊗ [(m( f (n))1 g1]
= [(m0 ( f (n)0)⊗̃g0]⊗ [m1 f (n)1 g1]
= [(m0 ( f (n0)0)⊗̃g0]⊗ [m1 f (n0)1ε(n1)g1]
= [(m0 ( f (n00)0)⊗̃g0]⊗ [m1 f (n00)1SH(n01)n1 g1]
= [(m0 ( f0(n0))⊗̃g0]⊗ [m1 f1n1 g1]
= [(m0⊗̃ f0)(n⊗̃g0]⊗ [(m1 f1)(n1 g1)]
= (m⊗̃ f )0(n⊗̃g)0 ⊗ (m⊗̃ f )1(n⊗̃g)1.

So the left S-action, the left H-action and the coaction are compatible with the product
of M⊗̃S M?.
This product is associative since,

[(m⊗̃ f )(n⊗̃g)](p⊗̃l) = [(m( f (n))⊗̃g](p⊗̃l)
= [(m( f (n))( g(p)]⊗̃l
= [m( ( f (n)( g(p))]⊗̃l
= [m( ( f (n( g(p)))]⊗̃l
= (m⊗̃ f )[(n( g(p))⊗̃l]
= (m⊗̃ f )[(n⊗̃g)(p⊗̃l)],

for all m,n, p ∈ M and f , g, l ∈ M?. So M⊗̃S M? is an (S,H)-dimodule algebra.

(ii) Since M is faithfully projective, φ is an isomorphism of dyslectic (S,H)-dimodules. Now
let us show that φ preserves the product and the identity element of M⊗̃S M?. For all
m,m′,m′′ ∈ M and f , f ′ ∈ M?,
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φ[(m⊗̃ f )(m′⊗̃ f ′)](m′′) =φ[(m( f (m′))⊗̃ f ′](m′′)
= (m( f (m′))( f ′(m′′)
= m( [ f (m′) f ′(m′′)]
= m( [ f (m′( f (m′′))],
= m( f (m′( f ′(m′′))
= m( f [φ(m′⊗̃ f ′)(m′′)]
=φ(m⊗̃ f )[φ(m′⊗̃ f ′)(m′′)]
= [φ(m⊗̃ f )φ(m′⊗̃ f ′)](m′′).

So φ preserves the product. Let {m(i)} and { f (i)} be the dual bases of M and M?. We have

φ(
∑

m(i)⊗̃ f (i))(m′)=∑
m(i) ( f (i)(m′)= m′.

We deduce that φ(
∑

m(i)⊗̃ f (i)) = idEndS (M) . So φ preserves the identity element m(i)⊗̃ f (i)

of M⊗̃S M?.

ä

Lemma 2.4.7. Let M be a faithfully projective dyslectic (S,H)-dimodule. Then

(i) M?⊗̃S M is a faithfully projective dyslectic (S,H)-dimodule algebra: the multiplication in
M?⊗̃S M is defined by

( f ⊗̃m)( f ′⊗̃m′)= f ⊗̃[ f ′(m)*m′] for all m,m′ ∈ M, f , f ′ ∈ M?. (2.4.6)

(ii) The natural R-linear map φ : M?⊗̃S M ∼= SEnd(M) defined by

φ( f ⊗̃m)(m′)= f (m′)*m, for all m,m′ ∈ M, f ∈ SEnd(M),

is an isomorphism of dyslectic (S,H)-dimodule algebras.

Proof.

(i) We know that M?⊗̃S M is a faithfully projective dyslectic (S,H)-dimodule since M and
M? = SHom(M,S) are faithfully projective dyslectic (S,H)-dimodules. Let s ∈ S, m,m′ ∈
M and f , f ′ ∈ M?, we have

[( f ⊗̃m)( s]( f ′⊗̃m′) = [ f ⊗̃(m( s)]( f ′⊗̃m′)
= f ⊗̃[ f ′(m( s)*m′]
= f ⊗̃[(s* f ′)(m)*m′]
= ( f ⊗̃m)[(s* f ′)⊗̃m′]
= ( f ⊗̃m)[s* ( f ′⊗̃m′)].
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So the product of M?⊗̃S M is well defined. For all s ∈ S, m,m′ ∈ M and f , f ′ ∈ M?, we have

[s* ( f ⊗̃m)]( f ′⊗̃m′) = [(s* f )⊗̃m]( f ′⊗̃m′)
= (s* f )⊗̃( f ′(m)*m′)
= s* [ f ⊗̃( f ′(m)*m′)]
= s* [( f ⊗̃m)( f ′⊗̃m′)].

Let h ∈ H,

h[( f ⊗̃m)( f ′⊗̃m′)] = h[ f ⊗̃( f ′(m)*m′)]
= (h1. f )⊗̃[h2( f ′(m))* (h3m′)]
= (h1. f )⊗̃[h2( f ′(ε(h3m))* (h4m′)]
= (h1. f )⊗̃[h2( f ′(SH(h31)h32m))* (h4m′)]
= (h1. f )⊗̃[h21( f ′(SH(h22)h3m))* (h4m′)]
= (h1. f )⊗̃[(h2. f ′)(h3m)* (h4m′)]
= (h1. f )⊗̃[(h3. f ′)(h2m)* (h4m′)]
= [(h1. f )⊗̃(h2m)][(h3. f ′)⊗̃(h4m′)]
= [h1( f ⊗̃m)][h2( f ′⊗̃m′)].

We also have

[( f ⊗̃m)( f ′⊗̃m′)]0 ⊗ [( f ⊗̃m)( f ′⊗̃m′)]1
= [ f ⊗̃( f ′(m)*m′)]0 ⊗ [ f ⊗̃( f ′(m)*m′)]1
= [ f0⊗̃( f ′(m)*m′)0]⊗ [ f1( f ′(m)*m′)1]
= [ f0⊗̃( f ′(m)0 *m′

0)]⊗ f1 f ′(m)1m′
1

= [ f0⊗̃( f ′(m0)0 *m′
0)]⊗ f1 f ′(m0)1ε(m1)m′

1
= [ f0⊗̃( f ′(m0)0 *m′

0)]⊗ f1 f ′(m0)1SH(m1)m2m′
1

= [ f0⊗̃( f ′(m00)0 *m′
0)]⊗ f1 f ′(m00)1SH(m01)m1m′

1
= [ f0⊗̃( f ′0(m0)*m′

0)]⊗ f1 f ′1m1m′
1

= ( f0⊗̃m0)( f ′0⊗̃m′
0)⊗ f1m1 f ′1m′

1
= ( f ⊗̃m)0( f ′⊗̃m′)0 ⊗ ( f ⊗̃m)1( f ′⊗̃m′)1.

So the left S-action, the left H-action and the coaction are compatible with the product
of M?⊗̃S M.
This product is also associative since,
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[( f ⊗̃m)( f ′⊗̃m′]( f ′′⊗̃m′′) = [ f ⊗̃( f ′(m)*m′)]( f ′′⊗̃m′′)
= f ⊗̃[ f ′′( f ′(m)*m′)*m′′]
= f ⊗̃[ f ′(m) f ′′(m′)*m′′]
= f ⊗̃[ f ′(m)* ( f ′′(m′)*m′′)]
= ( f ⊗̃m)[ f ′⊗̃( f ′′(m′)*m′′)]
= ( f ⊗̃m)[( f ′⊗̃m′)( f ′′⊗̃m′′)]

for all f , f ′, f ′′ ∈ M?, and m,m′,m′′ ∈ M. Therefore M?⊗̃S M is an (S,H)-dimodule alge-
bra.

(ii) As lemma 2.4.6 we will just show that φ preserves the product and the identity element
of M?⊗̃S M. For every f , f ′ ∈ M? and m,m′,m′′ ∈ M, we have

φ[( f ⊗̃m)( f ′⊗̃m′)](m′′) =φ[ f ⊗̃( f ′(m)*m)](m′′)
= f (m′′)* [ f ′(m)*m′]
= [ f (m′′) f ′(m)]*m′

= [ f ′( f (m′′)*m)]*m′

=φ( f ′⊗̃m′)( f (m′′)*m)
=φ( f ′⊗̃m′)[φ( f ⊗̃m)(m′′)]
= [φ( f ⊗̃m)φ( f ′⊗̃m′)](m′′)

Note f (i)⊗̃m(i) is the identity element of M?⊗̃S M, where { f (i)} and {m(i)} are respectively
the dual bases of M? and M. Hence for every m′ ∈ M we have

φ(
∑

f (i)⊗̃m(i))(m′)=∑
f (i)(m′)*m(i) = m′ = id

S End(M)(m
′).

Proposition 2.4.8. Let A be a dyslectic (S,H)-dimodule algebra. If M is a dyslectic (S,H)-
dimodule that is faithfully projective as an S-module, then

A#SEndS(M)∼= EndS(M)#S A and SEnd(M)#S A ∼= A#SSEnd(M)

as dyslectic (S,H)-dimodule algebras.

Proof. This is shown for general braided monoidal categories in [59, Proposition 2.4(i)].
Here we identify EndS(M) with M⊗̃S M?, we define the map η as the composition of the follow-
ing morphisms:

η : A#S M⊗̃S M?
γ−1⊗̃S id−→ M⊗̃S A#S M?

id⊗̃Sγ−→ M⊗̃S M?#S A

given by
η(a#m⊗̃ f )= m0⊗̃a1. f #SH(m1).a0, for all a ∈ A,m ∈ M and f ∈ M?.

So η is well defined. Now let us show that η is an algebra map. For all a,b ∈ A, m,n ∈ M
and f , g ∈ M?, we have
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η[(a#m⊗̃ f )(b#n⊗̃g)]
= η[a((m⊗̃ f )1.b)#(m⊗̃ f )0(n⊗̃g)]
= η[a((m1 f1).b)#(m0⊗̃ f0)(n⊗̃g)]
= η[a((m1 f1).b)#(m0 ( f0(n))⊗̃g]
= (m0 ( f0(n))0⊗̃[a((m1 f1).b)]1.g#SH[(m0 ( f0(n))1].[a((m1 f1).b)]0
= (m0 ( f0(n)0)⊗̃(a1b1).g#SH(m1 f0(n)1).[a0((m2 f1).b0)]
= m0⊗̃[ f0(n)0 * (a1b1).g]#SH(m1 f0(n)1).[a0((m2 f1).b0)]
= m0⊗̃[( f0(n)1a1b1).g( f0(n)0]#SH(m1 f0(n)2).[a0((m2 f1).b0)]
= m0⊗̃( f0(n)2a1b1).g#[ f0(n)0 * SH(m1 f0(n)1).[a0((m2 f1).b0)]]
= m0⊗̃( f0(n)2a1b1).g#[ f0(n)0 * SH( f0(n)1)SH(m1).[a0((m2 f1).b0)]]
= m0⊗̃( f0(n)1a1b1).g#[SH(m1).[a0((m2 f1).b0)]( f0(n)0]
= m0⊗̃( f0(n)1a1b1).g#[(SH(m1).a0)[(SH(m2)(m3 f1).b0)( f0(n)0]]
= m0⊗̃( f0(n)1a1b1).g#[(SH(m1).a0)[( f1.b0)( f0(n)0]]
= m0⊗̃( f (n0)01a1b1).g#[(SH(m1).a0)[( f (n0)1SH(n1).b0)( f (n0)00]]
= m0⊗̃( f (n0)1a1b1).g#[(SH(m1).a0)[ f (n0)0 * (SH(n1).b0)]]

η(a#m⊗̃ f )η(b#n⊗̃g)
= [m0⊗̃a1. f #SH(m1).a0][n0⊗̃b1.g#SH(n1).b0]
= (m0⊗̃a1. f )[(SH(m1).a0)1.(n0⊗̃b1.g)]#(SH(m1).a0)0(SH(n1).b0)
= (m0⊗̃a2. f )[a1.(n0⊗̃b1.g)]#(SH(m1).a0)(SH(n1).b0)
= [m0 ( (a3. f )(a1n0)]⊗̃a2b1.g#(SH(m1).a0)(SH(n1).b0)
= [m0 ( a3. f (SH(a2)a1n0)]⊗̃a4b1.g#(SH(m1).a0)(SH(n1).b0)
= [m0 ( a1. f (n0)]⊗̃a2b1.g#(SH(m1).a0)(SH(n1).b0)
= m0⊗̃[a1. f (n0)* a2b1.g]#(SH(m1).a0)(SH(n1).b0)
= m0⊗̃[( f (n0)1a2b1).g( a1. f (n0)0]#(SH(m1).a0)(SH(n1).b0)
= m0⊗̃( f (n0)1a2b1).g#[a1. f (n0)0 * (SH(m1).a0)(SH(n1).b0)]
= m0⊗̃( f (n0)1a1b1).g#[a01. f (n0)0 * (SH(m1).a00)(SH(n1).b0)]
= m0⊗̃( f (n0)1a1b1).g#[[a01. f (n0)0 * (SH(m1).a00)](SH(n1).b0)]
= m0⊗̃( f (n0)1a2b1).g#[[(SH(m1).a0)0 ( SH[(SH(m1).a0)1](a1. f (n0)0)](SH(n1).b0)]
= m0⊗̃( f (n0)1a3b1).g#[[(SH(m1).a0)( SH(a1)(a2. f (n0)0)](SH(n1).b0)]
= m0⊗̃( f (n0)1a1b1).g#[[(SH(m1).a0)( f (n0)0](SH(n1).b0)]
= m0⊗̃( f (n0)1a1b1).g#[(SH(m1).a0)[ f (n0)0 * (SH(n1).b0)]].

We have η[(a#m⊗̃ f )(b#n⊗̃g)] = η(a#m⊗̃ f )η(b#n⊗̃g) so η is an algebra map. We know that η is
an isomorphism of (S,H)-dimodules. Its inverse is the map

ξ : M⊗̃S M?#S A
id⊗̃Sγ

−1

−→ M⊗̃S A#S M?
γ⊗̃S id−→ A#S M⊗̃S M?,

given by
ξ(m⊗̃ f #a)= m1.a0#m0⊗̃SH(a1). f , for all m ∈ M, f ∈ M?,a ∈ A.

Therefore A#S EndS(M)∼= EndS(M)#S A as dyslectic (S,H)-dimodule algebras.
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2.5 Dyslectic (S,H)-dimodule Azumaya algebras

We will introduce the notion of a dyslectic (S,H)-dimodule Azumaya algebra and work from
there toward our eventual goal of defining the Brauer-Clifford-Long group.

Proposition 2.5.1. Let A be a dyslectic (S,H)-dimodule algebra which is faithfully projective
as an S-module. We define two S-linear maps

F : A#S Ā → EndS(A) and G : Ā#S A → EndS(A)
(a#b̄)(c) 7→ a(b1.c)b0 (ā#b)(c) 7→ (c1.a)c0b,

for all a,b and c ∈ A. Then F and G are dyslectic (S,H)-dimodule algebra homomorphisms.

Proof. The map F(a#b) is S-linear and F is well defined since

F(a#b)(c( s) = a(b1.(c( s))b0
= a((b1.c)( (b2.s))b0
= a(b2.c)((b1.s)* b0)
= a(b1.c)(b0 ( s)
= [a(b1.c)b0]( s
= [F(a#b)(c)]( s,

and

F[(a( s)#b̄](c) = (a( s)(b1.c)b0
= a(s* (b1.c))b0
= a(s1.(b1.c)( s0))b0
= a((s1b1).c)(s0 * b0)
= a((s* b)1.c)(s* b)0
= F[a#s* b](c)
= F[a#(s* b̄)](c),

for all a,b, c ∈ A and s ∈ S. It is clear that F is H-linear and left S-linear. For the right
H-colinearity, we have:

[F(a#b̄)]0(c)⊗ [F(a#b̄)]1 = [F(a#b̄)(c0)]⊗ [F(a#b̄)(c0)]1SH(c1)
= [a(b1.c0)b0]0 ⊗ [a(b1.c0)b0]1SH(c1)
= a0(b1.c0)0b00 ⊗a1(b1.c0)1b01SH(c1)
= a0(b1.c00)b00 ⊗a1c01b01SH(c1)
= a0(b01.c0)b00 ⊗a1b1ε(c1)
= a0(b01.c0ε(c1))b00 ⊗a1b1
= F(a0#b̄0)(c)⊗a1b̄1
= F((a#b̄)0)(c)⊗ (a#b̄)1.
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Finally, let us show that F is an algebra map. For all a,a′,b,b′c ∈ A, we have

F[(a#b̄)(a′#b̄′)](c) = F[a(b̄1.a′)#b̄0b̄′](c)
= F[a(b2.a′)#(b1.b′)b0](c)
= (a(b2.a′))[((b1.b′)b0)1.c]((b1.b′)b0)0
= (a(b2.a′))[((b1.b′)1b01).c]((b1.b′)0b00)
= (a(b2.a′))[(b′

1b01).c]((b1.b′
0)b00)

= a[(b2.a′)((b′
1b01).c)(b1.b′

0)]b00
= a[(b3.a′)(b1.(b′

1.c))(b2.b′
0)]b0

= a[(b1.a′)(b2.(b′
1.c))(b3.b′

0)]b0
= a[b1.(a′(b′

1.c)b′
0)]b0

= F(a#b̄)(a′(b′
1.c)b′

0)
= F(a#b̄)(F(a′#b̄′)(c))
= F(a#b̄)F(a′#b̄′)(c).

We deduce that F[(a#b̄)(a′#b̄′)]= F(a#b̄)F(a′#b̄′). Therefore F is a dyslectic (S,H)-dimodule
algebra homomorphism. We do the same work for the map G, since EndS(A) ∼= SEnd(A) and
we use the H-action and H-coaction defined in Lemma 2.2.3.

ä

Let A be a faithfully projective dyslectic (S,H)-dimodule algebra. We say that A is a
dyslectic (S,H)-dimodule Azumaya algebra, that is, an Azumaya algebra in the category D ys-
SDH , if A is faithfully projective, and the dyslectic (S,H)-dimodule algebra homomorphisms
F : A#S Ā → EndS(A) and G : Ā#S A → EndS(A) are isomorphisms.

An R-module is an R-progenerator if it is finitely generated projective and faithful (that is
a generator) in the category of R-modules. Let A be a dyslectic (S,H)-dimodule algebra. Since
H is cocommutative, if the coaction of H is trivial, then S is commutative, Ā = Aop, and A is
just an S-progenerator (S,H)-algebra for which the natural map A ⊗S Aop → EndS(A) is an
isomorphism of (S,H)-algebras. So A is an (S,H)-Azumaya algebra in the sense of [31]. Since
H is commutative, if the action of H is trivial, then S is commutative, Ā = Aop, and A is just
an S-progenerator (S,H)-Hopf algebra for which the natural map A⊗S Aop → EndS(A) is an
isomorphism of (S,H)-Hopf algebras. So A is an (S,H)-Hopf Azumaya algebra in the sense of
[31].

Theorem 2.5.2. The following properties hold:

(i) If M is a faithfully projective dyslectic (S,H)-dimodule, then EndS(M) is a dyslectic
(S,H)-dimodule Azumaya algebra.

(ii) If A and B are dyslectic (S,H)-dimodules Azumaya algebras, then A#SB is a dyslectic
(S,H)-dimodule Azumaya algebra.
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(iii) If A is a dyslectic (S,H)-dimodule Azumaya algebra, then Ā is a dyslectic (S,H)-dimodule
Azumaya algebra.

Proof.

(i) It is clear that EndS(M) is faithfully projective. The maps

F : EndS(M)#SEndS(M)→ EndS(EndS(M))

and G : EndS(M)#SEndS(M)→ EndS(EndS(M))

are isomorphisms since, from Proposition 2.4.4, we have

EndS(M)∼= SEnd(M)∼= EndS(M?)

as dyslectic (S,H)-dimodule algebras. So we have

EndS(M)#SEndS(M) ∼= EndS(M)#SEndS(M?)
∼= EndS(M⊗̃S M?) Proposition 2.4.5
∼= EndS(EndS(M)) Lemma 2.4.6(ii)

and
EndS(M)#SEndS(M) ∼= EndS(M?)#SEndS(M)

∼= EndS(M?⊗̃S M)
∼= EndS((M⊗̃S M?)?)
∼= EndS((EndS(M))?)
∼= EndS(EndS(M))

(ii) Since A⊗̃SB is faithfully projective so is A#SB. Using Propositions 2.4.3, 2.4.5, and 2.4.8,
the maps

F : (A#SB)#S A#SB → EndS(A#SB) and G : A#SB#S(A#SB)→ EndS(A#SB)

are dyslectic (S,H)-dimodule algebra isomorphisms:

(A#SB)#S A#SB ∼= A#SB#SB̄#S Ā
∼= A#SEndS(B)#S Ā
∼= A#S Ā#SEndS(B)
∼= EndS(A)#SEndS(B)
∼= EndS(A⊗̃SB)
∼= EndS(A#SB)

and
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A#SB#S(A#SB) ∼= B̄#S Ā#S A#SB
∼= B̄#SEndS(A)#SB
∼= B̄#SB#SEndS(A)
∼= EndS(B?)#SEndS(A?)
∼= EndS(B?⊗̃S A?)
∼= EndS((A⊗̃SB)?)
∼= EndS(A⊗̃SB)
∼= EndS(A#SB).

So F and G are isomorphisms.

(iii) Since A is faithfully projective so is Ā. Using Propositions 2.4.4 and 2.4.3, the map
F : Ā#S

¯̄A → EndS(Ā) and G : ¯̄A#S Ā → EndS(Ā) are dyslectic (S,H)-dimodule algebra
isomorphisms. We have:

Ā#S
¯̄A ∼= Ā#S A ∼= EndS(A)∼= EndS(A)∼= EndS(Ā),

and ¯̄A#S Ā ∼= A#S Ā ∼= EndS(A)∼= EndS(Ā)

so F and G are isomorphisms.

ä

We will say that a dyslectic (S,H)-dimodule Azumaya algebra E is trivial if E ∼= EndS(P)
as dyslectic (S,H)-dimodule algebras, for some faithfully projective dyslectic (S,H)-dimodule
P. If a dyslectic (S,H)-dimodule Azumaya algebra E is trivial, then so are E? and Ē. If M and
N are faithfully projective dyslectic (S,H)-dimodules, then so is M⊗̃S N. It follows from Propo-
sition 2.4.5 and Theorem 2.5.2 that the braided product of two trivial dyslectic (S,H)-dimodule
Azumaya algebras is a trivial dyslectic (S,H)-dimodule Azumaya algebra. When A is a dyslec-
tic (S,H)-dimodule Azumaya algebra, then we have that A#S Ā and EndS(A) are isomorphic
as dyslectic (S,H)-dimodule Azumaya algebras, and Ā#S A and EndS(A) are isomorphic as
dyslectic (S,H)-dimodule Azumaya algebras.

We will say that two dyslectic (S,H)-dimodule Azumaya algebras A and B are equivalent if
there exist trivial dyslectic (S,H)-dimodule Azumaya algebras E1 and E2 such that A#SE1 ∼=
B#SE2 as dyslectic (S,H)-dimodule Azumaya algebras.

Lemma 2.5.3. The above relation is an equivalence relation on the collection of dyslectic (S,H)-
dimodule Azumaya algebras.

Proof. The only thing we have to show is transitivity. Suppose A,B and C are dyslec-
tic (S,H)-dimodule Azumaya algebras for which A is equivalent to B and B is equivalent to
C. Then there exist faithfully projective dyslectic (S,H)-dimodules E1,E2,E3 and E4 such
that A#SEndS(E1) ∼= B#SEndS(E2) and B#SEndS(E3) ∼= C#SEndS(E4) as dyslectic (S,H)-
dimodule Azumaya algebras. We have the following dyslectic (S,H)-dimodule Azumaya al-
gebras isomorphisms:
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A#SEndS(E1⊗̃SE3) ∼= A#SEndS(E1)#SEndS(E3)
∼= B#SEndS(E2)#SEndS(E3)
∼= B#SEndS(E3)#SEndS(E2)
∼= C#SEndS(E4)#SEndS(E2)
∼= C#SEndS(E4⊗̃SE2),

so this relation is transitive, then it is an equivalence relation.

ä

We have now collected all of the ingredients necessary to define the Brauer group for the
braided monoidal category D ys-SDH .

Definition 2.5.4. The Brauer-Clifford-Long group for the category of dyslectic (S,H)-dimodules
Azumaya algebras is the set BD(S,H) of equivalence classes of dyslectic (S,H)-dimodule Azu-
maya algebras modulo the relation defined by taking #S-products with trivial dyslectic (S,H)-
dimodule Azumaya algebras.

We remind the reader that our Azumaya algebras in D ys-SDH are assumed to be left
and right faithfully projective. From the viewpoint of [23], these algebras constitute a closed
braided monoidal category and so the Brauer-Clifford-Long group we have described is the
Brauer group of this category.

Theorem 2.5.5. Let H be a commutative and cocommutative Hopf algebra and S an H-commutative
H-dimodule algebra. Then BD(S,H) is a group. If [A] and [B] denote the equivalence classes
of dyslectic (S,H)-dimodules Azumaya algebras A and B, then in BD(S,H), we will have
[A] . [B] = [A#SB] . The identity of BD(S,H) is the equivalence class [S] consisting of all triv-
ial dyslectic (S,H)-dimodules Azumaya algebras, and [A]−1 = [

Ā
]
, for all [A] ∈ BD(S,H).

Proof. The product in BD(S,H) is well defined by Propositions 2.4.3, 2.4.5, 2.4.8, and
Theorem 2.5.2(ii). This product is associative and has an identity element (Proposition 2.4.3).

Let A be a dyslectic (S,H)-dimodule Azumaya algebra. By Theorem 2.5.2(iii), Ā is a dyslec-
tic (S,H)-dimodule Azumaya algebra. It is clear that

[
Ā

]
is the inverse of [A] in BD(S,H).

Therefore BD(S,H) is a group.

ä

Example 2.5.6.

We consider again Example 2.1.1.
A G-graded algebra S is an R-algebra S which is a G-graded R-module S =⊕

σ∈GSσ such that
ss′ ∈ Sσσ′ for all s ∈ Sσ and s′ ∈ Sσ′ . An R-module is a G-graded algebra if and only if it is an
RG-comodule algebra. A left G-module algebra is exactly a left RG-module algebra. If S is a G-
module algebra, we will denote the smash product of S with RG by S#G. A G-dimodule algebra
is a G-graded algebra which is a G-dimodule and a G-module algebra. Let S be a G-dimodule
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algebra. Following the terminology of [15], an (S,G)-dimodule will be a G-graded S-module
which is an S#G-module and a G-dimodule. S is graded-commutative if ss′ = (σ.s′)s for all
s ∈ Sσ, s′ ∈ S. Then S is graded-commutative if and only if it is RG-commutative. Let S be a
graded-commutative dimodule algebra. We denote by SDG the category of (S,G)-dimodules: its
morphisms are the graded S-linear maps of degree e which are G-linear. An (S,G)-dimodule
M is dyslectic if s * m = (σ′.s)(σm) for all s ∈ Sσ and m ∈ Mσ′ . We denote by D ys-SDG the
category of dyslectic (S,G)-dimodules: it is an abelian full subcategory of SDG . If M and N are
dyslectic (S,G)-dimodules, so is M ⊗S N. We can show that (D ys-SDG , ⊗S,S,γ) is a braided
monoidal category, where γM,N (m⊗S n) = σn⊗S m for m ∈ Mσ and n ∈ N. Then we can define
a Brauer group in D ys-SDG which we will denote by BD(S,G): it is a generalization of the
Brauer-Long group BD(R,G) of R with respect to G introduced in [15]. We can show that the
categories D ys-SDRG and D ys-SDG are equivalent and that the Brauer-Clifford-Long group
BD(S,RG) is isomorphic to the Brauer group BD(S,G).

Before ending our example, let’s say a few words about RG-dimodules in the case of a
cyclic group of order 2, G = {e,σ}. Set H = RG, the left group algebra of G over R. If S is an
H-dimodule algebra, then for any s ∈ S, we have

ρ(s)= s(0) ⊗ e+ s(1) ⊗σ (2.5.1)

Therefore for any s, t ∈ S, we have:

(i) s = s(0) + s(1) with s(0), s(1) ∈ S,

(ii) (st)(0) = s(0)t(0) + s(1)t(1),

(iii) (st)(1) = s(0)t(1) + s(1)t(0),

(iv) (σs)(0) =σs(0) and (σs)(1) =σs(1).

The RG-commutativity of S means

ss′ = s′s(0) + (σ.s′)s(1) (2.5.2)

For an (S,RG)-dimodule M, where S is an RG-commutative RG-dimodule algebra, the
dyslectic condition means

s*m = [s(0) *m(0)]+ [s(1) * (σm(0))]+ [(σ.s(0))*m(1)]+ [(σ.s(1))* (σm(1))].

Example 2.5.7.

We keep the notations of Example 2.1.2.

If M is an L-comodule, we denote by m 7→ m(0) ⊗m(1) its comodule structure. Let S be a
K-dimodule algebra and T be an L-dimodule algebra. Then S×T is an H-dimodule algebra :

(λ,λ′)(s, t)= (λs,λ′t),
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(k, l).(s, t)= (k.s, l.t)

and
(s, t)[0] ⊗R (s, t)[1] = (s0, t(0))⊗R (s1, t(1))

for λ,λ′ ∈ k, k ∈ K , l ∈ L, s ∈ S and t ∈ T. If furthermore, S is K-commutative and T is L-
commutative, then S ×T is H-commutative. Let S be a K-commutative K-dimodule algebra
and T an L-commutative L-dimodule algebra. Thus we can consider the categories SDK ,
D ys-SDK , TDL, D ys-TDL, (S×T)D

H , D ys-(S×T)D
H . We have three Brauer groups BD(S,K),

BD(T,L) and BD(S×T,H). We want to establish some relations between these Brauer groups.
Every object M of the category SDK (resp. D ys-SDK ) is an object of S×TDH (resp. D ys-
(S×T)D

H) : (s, t)m = sm (the first projection S×T → S), (k, l).m = km (the first projection K×L →
K) and m[0]⊗m[1] = m0⊗(m1,0L) for s ∈ S, t ∈ T and m ∈ M. Every object M of the category TDL

(resp. D ys-TDL) is an object of (S×T)D
H (resp. D ys-(S×T)D

H) : (s, t)m = tm (the second projec-
tion S×T → T), (k, l).m = lm (the second projection K×L → L) and m[0]⊗m[1] = m(0)⊗(0K ,m(1)).

For every M in SDK or in TDL, we have EndS(M)= EndS×T (M).

Let M and N be two (S×T,H)-dimodules. Then the braiding map in (S×T)D
H is defined by

γM,N (m⊗S×T n)= (m[1].n)⊗S×T m[0] ∀ m ∈ M,n ∈ N.

When M and N are objects of SDK viewed as objects of (S×T)D
H , we have

γM,N (m⊗S×T n)= (m1.n)⊗S×T m0

(note the similarity with the braiding of SDK ).

When M and N are objects of TDL viewed as objects of (S×T)D
H , we have

γM,N (m⊗S×T n)= (m(1).n)⊗S×T m(0)

(note the similarity with the braiding of TDL). Now when M (resp. N) is an object of SDK (resp.
an object of TDL) viewed as an object of (S×T)D

H , we will consider the trivial braiding, that is,

γM,N (m⊗S×T n)= n⊗S×T m.

In the same way, when M (resp. N) is an object of TDL (resp. an object of SDK ) viewed as an
object of (S×T)D

H , we will consider the trivial braiding.

Every faithfully projective object in D ys-SDK is faithfully projective in D ys-(S×T)D
H . Like-

wise, every faithfully projective object in D ys-TDL is faithfully projective in D ys-(S×T)D
H . Let

A be a dyslectic (S,K)-dimodule algebra (resp. a dyslectic (T,L)-dimodule algebra), then A
is a dyslectic (S ×T,H)-dimodule algebra. If Ā is the K-opposite algebra of A as a dyslectic
(S,K)-dimodule algebra, then Ā is the H-opposite of A as a dyslectic (S×T,H)-dimodule alge-
bra. Likewise, if Ā is the L-opposite algebra of A as a dyslectic (T,L)-dimodule algebra, then
Ā is the H-opposite of A as a dyslectic (S×T,H)-dimodule algebra. Dyslectic (S,K)-dimodule
Azumaya algebras and dyslectic (T,L)-dimodule Azumaya algebras are dyslectic (S × T,H)-
dimodule Azumaya algebras.
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If A and B are dyslectic (S,K)-dimodule algebras, the braided product of A and B in D ys-
(S×T)D

H is given by

(a#S×T b)(a′#S×T b′)= (a(b1.a′))#S×T (b0b′); a,a′ ∈ A,b,b′ ∈ B.

If A and B are dyslectic (T,L)-dimodule algebras, the braided product of A and B in D ys-
(S×T)D

H is given by

(a#S×T b)(a′#S×T b′)= (a(b(1).a′))#S×T (b(0)b′); a,a′ ∈ A,b,b′ ∈ B.

We have injective group homomorphisms

BD(S,K) ,→ BD(S×T,H)

and
BD(T,L) ,→ BD(S×T,H).

If T =k as a trivial L-dimodule algebra, we deduce an injective group homomorphism

BD(S,K) ,→ BD(S,H).

If S =k as a trivial K-dimodule algebra, we deduce an injective group homomorphism

BD(T,L) ,→ BD(T,H).

Let A (resp. B) be a dyslectic (S,K)-dimodule algebra (resp. a dyslectic (T,L)-dimodule
algebra). Then the braided product of A and B in D ys-(S×T)D

H is the trivial one, that is,

(a#S×T b)(a′#S×T b′)= (aa′)⊗S×T (bb′); a,a′ ∈ A,b,b′ ∈ B.

It follows that the classes of A and B in BD(S ×T,H) commute. Furthermore if A (resp. B)
is a dyslectic (S,K)-dimodule Azumaya algebra (resp. a dyslectic (T,L)-dimodule Azumaya
algebra), then A#S×T B is a dyslectic (S,T)-dimodule Azumaya algebra. We have a well-defined
injective group homomorphism

BD(S,K)×BD(T,L)−→ BD(S×T,H); ([A], [B]) 7−→ [A⊗S×T B].

We can show that the intersection of BD(S,K) and BD(T,L) in BD(S×T,H) is trivial.

2.6 Elementary homomorphisms between Brauer-Clifford-
Long groups

We are going to present some elementary homomorphisms between Brauer-Clifford-Long groups
that are induced by scalar extensions and central twists.
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We first consider scalar extensions. Let R′ be a commutative ring with trivial H-action
and H-coaction. Fix a ring homomorphism from R to R′. Then H′ = R′⊗H equipped with its
natural R′-module structure is a Hopf algebra over R′. Let S be an H-commutative H-dimodule
algebra. Then R′⊗S is an H′-commutative H′-dimodule algebra. Let M be an (S,H)-dimodule.
Then R′⊗M equipped with its natural R′⊗S-module structure is an (R′⊗S,H′)-dimodule. If
M is dyslectic then so is R′⊗ M. If M is faithfully projective as an S-module, then R′⊗ M is
faithfully projective as an R′⊗S-module. Furthermore, if A is an (S,H)-dimodule (Azumaya)
algebra, then R′⊗ A will be an (R′⊗S,H′)-dimodule (Azumaya) algebra, and R′⊗ A ∼= R ⊗ Ā.
The canonical nature of these identifications allows us to lift this to a homomorphism between
the Brauer-Clifford groups.

Proposition 2.6.1. Let S be an H-commutative H-dimodule algebra. Suppose that R′ is a
commutative ring with trivial H-action and H-coaction and there is a homomorphism ring
from R′ to R. Then the map BD(S,H) → BD(R′ ⊗S,R′ ⊗ H) given by [A] 7→ [

R′⊗ A
]
, for all

(S,H)-dimodule Azumaya algebras A, is a group homomorphism.

Central twists also induce homomorphisms between Brauer-Clifford-Long groups. Let S be
an H-commutative H-dimodule algebra. Let H-AutR(S) be the group of H-dimodule algebra
automorphisms of S. We claim there is an action of H-AutR(S) on the Brauer-Clifford-Long
group. For M ∈ SDH and τ in H-AutR(S), let τM be equal to M as an H-dimodule, but has left
S-module structure given by

s.m = τ−1(s)*m

for all s ∈ S,m ∈ M. Using the H-linearity and the colinearity of τ, we can see that τM ∈ SDH .
The corresponding right S-module structure on τM is given by

m/ s = m( τ−1(s).

Using the H-linearity and the H-colinearity of τ, we can show that if M is an object of D ys-
SDH then so is τM.

Lemma 2.6.2. Let S be an H-commutative H-dimodule algebra. Let τ ∈ H-AutR(S). Let
M, N ∈ SDH . Then the following hold.

(i) τ(M⊗̃S N)= τM⊗̃SτN;

(ii) M is finitely generated projective as a right (left) S-module if and only if τM is finitely
generated projective as a right (left) S-module;

(iii) If M is finitely generated projective as a right S-module, then τHomS(M; N) and HomS(τM,τN)
are isomorphic in SDH ,

Brauer groups in some braided monoidal categories C. L. NANGO ©UASZ/UFR-ST/LMA/Hopf Algebra, 2021



CHAPTER 2. A BRAUER-CLIFFORD-LONG GROUP FOR THE CATEGORY OF DYSLECTIC (S,H)-DIMODULE ALGEBRAS 74

(iv) If M is finitely generated projective as a left S-module, then τ(SHom(M, N)) and SHom(τM,τN)
are isomorphic in SDH ; and

(v) M is S-faithfully projective in D ys-SDH if and only if τM is S-faithfully projective in
D ys-SDH .

Proof.

(i) The new S-action is well defined. The identity map Id : τ(M⊗̃S N)→ τM⊗̃SτN is H-linear,
H-colinear and S-linear. So τ(M⊗̃S N)= τM⊗̃SτN in SDH .

(ii) Since M is finitely generated projective, m = ∑
i∈I f (i)(m) * m(i), where {m(i), f (i)} is a

dual basis of the left S-module M. For all s ∈ S,m ∈ M; we have

s.m = τ−1(s)*m ⇐⇒ τ(s).m = τ−1(τ(s))*m = s*m.

We deduce that, for every m ∈ M,

m = ∑
i∈I

f (i)(m)*m(i) = ∑
i∈I
τ( f (i)(m)).m(i) = ∑

i∈I
(τ◦ f (i))(m).m(i),

that is, M is finitely generated projective as a left S-module iff τM is finitely generated
projective as a left S-module.

(iii) Let M, N in SDH and f ∈ HomS(M, N).
By definition, M (resp. N) is equal to τM (resp. τN) as objects of DH then, f is right
S-linear, left H-linear and right H-colinear from M to N, if and only if it is so from τM
to τN and s. f = s* f . On the other hand, τHomS(M, N) is equal to HomS(τM,τN) as
objects of DH and the identity map from τHomS(M, N) to HomS(τM,τN) is S-linear.

Therefore τHomS(M, N)∼= HomS(τM,τN) as objects of SDH .

(iv) Adapt the proof of (iii).

(v) By definition, M ∈ D ys-SDH ⇐⇒ τM ∈ D ys-SDH , and it is clear that M is faithfully
projective as a left S-module iff τM faithfully projective as a left S-module.

ä

Definition 2.6.3. Let S be an H-commutative H-dimodule algebra. Let A be an algebra in
D ys-SDH . For any τ ∈ H-AutR(S), we define τA to be equal to A as an H-dimodule algebra, but
equal to τA as an S-module.

Lemma 2.6.4. Let S be an H-commutative H-dimodule algebra. Let τ ∈ H-AutR(S) and A be
an algebra in D ys-SDH . Then τA is an algebra in D ys-SDH .
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Proof. By Lemma 2.6.2 (i), τ(A⊗̃S A) = τA⊗̃SτA in D ys-SDH . The product of A induces a
well-defined product on τA ( see Lemma 2.6.2 (i)). The unit map on A induces a well-defined
unit map on τA. This product and this unit map satisfy the usual properties of associative alge-
bra. Therefore τA is a dyslectic (S,H)-dimodule algebra, that is, it is an algebra in D ys-SDH .

ä

Lemma 2.6.5. Let S be an H-commutative H-dimodule algebra. Let τ ∈ H-AutR(S). Then the
following hold.

(i) If M is faithfully projective as an S-module in D ys-SDH , then τEndS(M) ∼= EndS(τM)
and τ(SEnd(M))∼= SEnd(τM) as algebras in D ys-SDH ;

(ii) if A is an algebra in D ys-SDH , then τA is an algebra in D ys-SDH , and τA = τ Ā as alge-
bras in D ys-SDH ;

(iii) if A and B are algebras in D ys-SDH , then τ(A#SB) is an algebra in D ys-SDH and
τ(A#SB)∼= τA#SτB as algebras in D ys-SDH ; and

(iv) if A is an Azumaya algebra in D ys-SDH , then so is τA.

Proof.

(i) From Lemma 2.6.2 (iii) and (iv), τEndS(M) ∼= EndS(τM) and τ(SEnd(M)) ∼= SEnd(τM)
in SDH . Since EndS(M) and SEnd(M) are algebras in D ys-SDH , so are τEndS(M)
and τ(SEnd(M)) (Lemma 2.6.4). Clearly EndS(τM) and SEnd(τM) are algebras in
D ys-SDH . Therefore τEndS(M) ∼= EndS(τM) and τ(SEnd(M)) ∼= SEnd(τM) as algebras
in D ys-SDH .

(ii) Since τA and Ā are algebras in D ys-SDH , so are τA and τ Ā (Lemmas 2.4.2 and 2.6.4)
and we have:

s.a = τ−1(s)* a = τ−1(s)* ā = s. ā.

Therefore τA is equal to τ Ā as algebras in D ys-SDH .

(iii) Let A and B be algebras in D ys-SDH . A#SB is an algebra in D ys-SDH(Proposition 2.4.3
(i)), so by Lemma 2.6.4 , τ(A#SB) is an algebra in D ys-SDH . Since τA and τB are alge-
bras in D ys-SDH (Lemma 2.6.4) , then so is τA#SτB. We also have τ(A#SB)= τA#SτB in
SDH , therefore τ(A#SB)∼= τA#SτB as algebras in D ys-SDH .
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(iv) Let A be an Azumaya algebra in D ys-SDH . Using the definition of an Azumaya algebra
and the fact that τA =τ Ā, we get the assertion.

ä

Proposition 2.6.6. H-AutR(S) acts by automorphisms on BD(S,H). The action is given by
τ. [A]= [τA] , for any Azumaya algebra A in D ys-SDH and τ ∈ H-AutR(S).

Proof. Let A and B be two equivalent Azumaya algebras in D ys-SDH . Then there ex-
ist faitfully projective (S,H)-dimodules M and N such that A#SEndS(M) ∼= B#SEndS(N) as
dimodules algebras. By Lemma 2.6.5(i) and (iii), we have:

τA#S EndS(τM) ∼= τA#S τEndS(M)
∼= τ(A#S EndS(M))
∼= τ(B#S EndS(N))
∼= τB#S τEndS(N)
∼= τB#S EndS(τN).

Then τA and τB are Brauer equivalent Azumaya algebras in D ys-SDH . So the action of
H-AutR(S) on BD(S,H) is well defined.

By Lemma 2.6.5 (iii), τ(A#SB)∼= τA#SτB as algebras in D ys-SDH . Then, we have

τ.([A] [B])= τ.([A#SB])= [τ(A#SB)]= [τA#SτB]= [τA] [τB]= (τ. [A])(τ. [B]),

so the action of τ on BD(S,H) is a homomorphism of groups.

Let A and B be Azumaya algebras in D ys-SDH . If τ,τ′ ∈ H-AutR(S), ττ′ A and τ(τ′ A) are
equal to A as dimodules. The map φ : ττ′ A → τ(τ′ A) given by φ(a) = a, is an isomorphism in
D ys-SDH . So we have

(ττ′). [A]= [
(ττ′) A

]= [τ(τ′ A)]= τ.([τ′ A])= τ.(τ′. [A]).

We have Id. [A] = [A], where Id is the identity element of H-AutR(S) and note that τ. [S] =
[S] , ∀τ ∈ H-AutR(S). Therefore H-AutR(S) acts by automorphism on BD(S,H).

ä

We conclude our paper by establishing an anti-isomorphism of groups between our Brauer-
Clifford-Long group BD(S,H) and the Brauer-Clifford-Long group studied in [32]. We give
detailed proof for a best understanding of this isomorphism.

2.7 Anti-isomorphism between BD(S,H) and BQ(Sop,H)

Let H be a Hopf algebra with a bijective antipode. For Hopf Yetter-Drinfel’d H-modules M and
N, there exist a Yetter-Drinfel’d H- module isomorphism γ′

M,N
from M⊗̃N to N⊗̃M defined by
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γ′
M,N

(m⊗̃n)= n0⊗̃n1m, for all m ∈ M,n ∈ N (2.7.1)

with inverse
γ′

−1

M,N
(n⊗̃m)= SH(n1)m⊗̃n0, for all m ∈ M,n ∈ N (2.7.2)

According to [18, (1.2.4)] and [17, (1.4)], (QH ,⊗̃k,γ′
M,N

,k) is a braided monoidal category where
QH is the category of Hopf Yetter Drinfel’d H-modules.
A Hopf Yetter Drinfel’d H-module algebra T is said to be H-commutative if:

tt′ = t′0(t′1.t), for all t, t′ ∈ T. (2.7.3)

Let H be commutative and cocommutative. Thus, the category of H-dimodules DH and the
category of Hopf Yetter Drinfel’d H-modules QH are equivalent.

Lemma 2.7.1. An H-dimodule algebra S is H-commutative if and only if its opposite Sop is
H-commutative as a Hopf Yetter-Drinfel’d H-module algebra.

Using the H-commutativity of Sop with the braiding of Hopf Yetter-Drinfel’d H-modules,
we can form the category of Hopf Yetter-Drinfel’d (Sop,H)-modules SopQH . According to [32],
we have a Brauer-Clifford-Long group BQ(Sop,H) of dyslectic Hopf Yetter-Drinfel’d (Sop,H)-
module Azumaya algebras.

Let M be an (S,H)-dimodule. Then M becomes a right Sop-module if we set:

m Î so = s*m, for all m ∈ M, s ∈ S. (2.7.4)

Since Sop is an H-commutative Hopf Yetter Drinfel’d H-module algebra, according to the
relation (18) of [32], M becomes a left Sop-module:

so Ï m = (SH(s1)m)Î so
0, for all m ∈ M, s ∈ S. (2.7.5)

Using the relation (2.7.4), we obtain:

so Ï m = s0 * (SH(s1)m), for all m ∈ M, s ∈ S. (2.7.6)

From now on, H is commutative and cocommutative and S is an H-commutative H-dimodule
algebra.

Lemma 2.7.2. Let M be an (S,H)-dimodule. Considering the actions defined above,

(i) M is an object of SDH iff it is an object of SopQH ,

(ii) M is a dyslectic object of SDH iff it is a dyslectic object of SopQH .

Proof.
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(i) The proof uses formula (2.7.4), the commutativity of H and the dimodule condition.

(ii) Let M ∈ D ys-SDH . For all m ∈ M and s ∈ S, we have from
(2.3.4): m( s = s0 * (SH(s0)m), then

so Ï m = s0 * (SH(s1)m)= m( s = (m1.s)*m0 = m0 Î (m1.s)o = m0 Î (m1.so),

that is M ∈ D ys-SopQH . Let M ∈ D ys-SopQH , for all m ∈ M, s ∈ S, we have:

s*m = m Î so = so
0 Ï (s1m)= (s1m)0 Î ((s1m)1.so

0)= ((s1m)1.s0)* (s1m)0 = (s1m)( s0,

this is the condition (2.3.3), then M ∈ D ys-SDH .

ä

Consider a dyslectic (S,H)-dimodule algebra A. Then A ∈ SopQH . The opposite Aop of A is
equal to A as an object of SDH but equiped with the product aobo = (ba)o for all a,b ∈ A.

Lemma 2.7.3. (i) If A is a dyslectic (S,H)-dimodule algebra, then Aop is a dyslectic Hopf
Yetter Drinfel’d (Sop,H)-module algebra: the left action of Sop on Aop is defined by

so Ï ao = (so Ï a)o, for all a ∈ A, s ∈ S.

(ii) If A is a dyslectic Hopf Yetter Drinfel’d (Sop,H)-module algebra, then Aop is a dyslectic
(S,H)-dimodule algebra: the left action of S on Aop is defined by

s* ao = (s* a)o, for all a ∈ A, s ∈ S.

Proof.

(i) For all a,b ∈ A, we have:

ao(so Ï bo) = ao[s0 * (SH(s1).b)]o

= [(s0 * (SH(s1).b))a]o

= [(b( s)a]o

= [b(s* a)]o

= (s* a)obo

= (ao Î so)bo,

that is, the multiplication in Aop is well-defined.

It is clear that the product in Aop is Sop-linear and compatible with the H-action and
the H-coaction. In addition, for all s ∈ S and a ∈ A; we have:

so Ï ao = (s0 * (SH(s1).a))o = (a( s)o = ((a1.s)* a0)o = ao
0 Î (a1.so)

Therefore Aop is a dyslectic Hopf Yetter Drinfel’d (Sop,H)-module algebra.
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(ii) We use the same method as in (i).

ä

For every algebra A in D ys-SDH , we have Aopop = A as algebras in D ys-SDH . Similarly,
for every algebra A in D ys-SopQH , we have Aopop = A as algebras in D ys-SopQH .

To avoid all confusion, the product #Sop will be denoted by \, that is for all A,B ∈ D ys-SopQH

we have:
(a\b)(a′\b′)= aa′

0\(a
′
1.b)b′ ∀a,a′ ∈ A, b,b′ ∈ B. (2.7.7)

Lemma 2.7.4. (i) If A and B are dyslectic (S,H)-dimodules algebras, then (A#SB)op ∼=
Bop\Aop as dyslectic Hopf Yetter- Drinfel’d (Sop,H)-module algebras .

(ii) If A and B are dyslectic Hopf Yetter Drinfel’d (Sop,H)-modules algebras, then (A\B)op ∼=
Bop#S Aop as dyslectic (S,H)-dimodule algebras .

Proof.

(i) A and B are dyslectic (S,H)-dimodules algebras. Consider the map δ : (A#SB)op →
Bop\Aop by δ((a#b)o)= bo\ao. For all s ∈ S we have:

δ[((a( s)#b)o] = bo\(a( s)o

= bo\(s0 * (SH(s1).a))o

= bo\(so Ï ao)
= (bo Î so)\ao

= (s* b)o\ao

= δ[(a#(s* b))o], so δ is well-defined.

δ(so Ï (a#b)o) = δ[(s0 * (SH(s1)(a#b)))o]
= δ[(s0 * [(SH(s1).a)#(SH(s2).b)])o]
= δ[([s0 * (SH(s1).a)]#(SH(s2).b))o]
= (SH(s2).b)o\[s0 * (SH(s1).a)]o

= (SH(s1).bo)\(so
0 Ï ao)

= ((SH(s1).bo)Î so
0)\ao

= (so Ï bo)\ao, from the relation (18) in [32]
= so Ï (bo\ao)
= so Ï δ((a#b)o), so δ is left Sop-linear.
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δ[h.(a#b)o] = δ[(h.(a#b))o]
= δ[((h1.a)#(h2.b))o]
= (h2.b)o\(h1.a)o

= (h1.bo)\(h2.ao)
= h(bo\ao)
= hδ[(a#b)o], δ is also H-linear.

Clearly δ is H-linear and H-colinear. From that, δ is a morphism of Hopf Yetter-Drinfel’d
(Sop,H)-modules. We also have:

δ[(a#b)o(c#d)o] = δ[((c#d)(a#b))o]
= δ[(c(a1.d)#a0b)o]
= (a0b)o\(c(a1.d))o

= boao
0\(a1.do)co

= (bo\ao)(do\co)
= δ[(a#b)o]δ[(c#d)o],

δ is an algebra map and it is obvious that it is an isomorphism.

(ii) Let us consider A and B as dyslectic Hopf Yetter Drenfil’d (Sop,H)-module algebras.
Consider the

δ′ : (A\B)op → Bop#S Aop by δ′((a\b)o)= bo#ao

for all a ∈ A,b ∈ B. It is easy to show that δ′ is well-defined and it is a homomorphism in
D ys-SDH . We’ll just show that it is an algebra map. Let a, c ∈ A and b,d ∈ B:

δ′[(a\b)o(c\d)o] = δ′[((c\d)(a\b))o]
= δ′[(ca0\(a1.d)b)o]
= ((a1.d)b)o#(ca0)o

= (bo(a1.do))#ao
0co

= (bo#ao)(do#co)
= δ′((a\b)o)δ′((c\d)o),

δ′ is an algebra map and it is clearly an isomorphism.

ä
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Let A be a dyslectic Hopf Yetter-Drinfel’d (Sop,H)-module algebra. We denote by Ã its
H-opposite algebra which is equal to A as dyslectic Hopf Yetter-Drinfel’d (Sop,H)-module but
with the multiplication given by:

ãb̃ = ãb0(b1.a), for all a,b ∈ A.

Note that if A is an algebra in D ys-SDH , then A
op

and Ãop are isomorphic as dyslectic
Hopf Yetter-Drinfel’d (Sop,H)-module algebras.
Likewise, if A is an algebra in D ys-SopQH , then Ãop and Aop are isomorphic as algebras in
D ys-SDH .

Lemma 2.7.5. (i) If M is an object of D ys-SopQH which is faithfully projective as an Sop-
module, then EndSop (M)op = EndS(M) as algebras in D ys-SDH .

(ii) If M is an object of D ys-SDH which is faithfully projective as an S-module, then EndS(M)op =
EndSop (M) as algebras in D ys-SopQH .

Proof.
Sop and S have the same elements, similarly for M ∈ D ys-SopQH , EndSop (M)op and EndS(M)
have the same elements and we know that

f (m Î so)= f (m)( s

In fact we have:
f (m)Î so = f (m Î so) (2.7.4)= f (s*m) (2.2.16)= ( f ( s)(m).

By Femic in [23, Subsection 2.2], since D ys-SDH is a braided monoidal category, we deduce an
isomorphism of dyslectic (S,H)-dimodules EndS(M) = SEnd(M) in D ys-SDH , with M finitely
generated projective as a left and as a right S-module. Then

EndS(M)= SEnd(M) =⇒ ( f ( s)(m) (2.2.17)= f (m)( s.

Therefore

f (m)Î so = f (m Î so) (2.7.4)= f (s*m) (2.2.16)= ( f ( s)(m) (2.2.17)= f (m)( s.

ä

Proposition 2.7.6. (i) If A is a dyslectic (S,H)-dimodule Azumaya algebra, then Aop is a
dyslectic Hopf Yetter-Drindfel’d (Sop,H)-module Azumaya algebra.

(ii) If A is a dyslectic Hopf Yetter-Drindfel’d (Sop,H)-module Azumaya algebra, then Aop is
a dyslectic (S,H)-dimodule Azumaya algebra.

Proof.
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(i) Let A be an Azumaya algebra in D ys-SDH . Then the maps F : A#S Ā → EndS(A) and
G : Ā#S A → EndS(A) defined in Proposition 2.5.1 are isomorphisms of dyslectic (S,H)-
dimodules algebras. Let us consider the maps Fop : Aop\Ãop → EndSop (Aop) and Gop :
Ãop\Aop → ãEndSop (Aop) defined respectively by

Fop(ao\b̃o)(co)= aoco
0(c1.bo) and Gop(ão\bo)(co)= ao

0(a1.co)bo, for all a,b, c ∈ A.

We have:

[F(a#b̄)(c)]o = (a(b1.c)b0)o = bo
0(a(b1.c))o = bo

0((b1.co)ao)=Gop(b̃o\ao)(co)

[G(ā#b)(c)]o = ((c1.a)c0b)o = bo((c1.a)c0)o = bo(co
0(c1.a)o)= boco

0(c1.ao)= Fop(bo\ão)(co)

Since F and G are isomorphisms of dyslectic (S,H)-dimodules algebras, Fop and Gop are
isomorphisms of dyslectic Hopf Yetter-Drinfel’d (Sop,H)-modules algebras. Hence Aop is
an Azumaya algebra in D ys-SopQH .

(ii) Let A be an Azumaya algebra in D ys-SopQH Then the maps

V : A\Ã −→ EndSop (A), (a\b̃)(c) 7−→ ac0(c1.b)

and
W : Ã\A −→ ãEndSop (A), (ã\b)(c) 7−→ a0(a1.c)b,

for all a,b, c ∈ A are isomorphisms of dyslectic Hopf Yetter-Drinfel’d (Sop,H)-modules
algebras see [32] .
Let’s consider the maps

V op : Aop#Aop −→ EndS(Aop), (ao#bo)(co) 7−→ ao(b1.co)bo
0

and
W op : Aop#Aop −→ EndS(Aop), (ao#bo)(co) 7−→ (c1.ao)co

0bo,

for all a,b, c ∈ A. We have:

[V (a\b̃)(c)]o = [ac0(c1.b)]o = (c1.bo)co
0ao =W op(bo#ao)(co)

and [W(ã\b)(c)]o = [a0(a1.c)b]o = bo(a1.co)ao
0 =V op(bo#ao)(co)

Since V and W are isomorphisms of dyslectic Hopf Yetter-Drinfel’d (Sop,H)-modules al-
gebras, V op and W op are isomorphisms of dyslectic (S,H)-dimodules algebras, that is,
Aop is an Azumaya algebra in D ys-SDH .

ä

Theorem 2.7.7. Let H be a Hopf algebra and S be an H-commutative H-dimodule algebra.
There is an anti-isomorphism of groups

χ : BD(S,H)−→ BQ(Sop,H) given by χ([A])= [[
Aop]]

,

where [[Aop]] represents the class of Aop in BQ(Sop,H).
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Proof. Consider two dyslectic (S,H)-dimodules Azumaya algebras A and B which are
respectively represented in BD(S,H) by the classes [A] and [B] . It is clear that the map χ is
well defined (Lemmas 2.7.4 and 2.7.5), and we have:

χ([A] . [B])= χ([A#SB])= [[
(A#SB)op]]= [[

Bop\Aop]]= [[
Bop]][[

Aop]]= χ [B]χ [A] .

So χ is an anti-homomorphism of groups. Clearly, χ is a bijection : its inverse is

χ−1 : BQ(Sop,H)−→ BD(S,H), [[A]] 7−→ [
Aop]

,

where [[A]] represents the class of A in BQ(Sop,H). Therefore χ is an anti-isomorphism of
groups.

ä

Brauer groups in some braided monoidal categories C. L. NANGO ©UASZ/UFR-ST/LMA/Hopf Algebra, 2021



Chapter 3

AN ANTI-ISOMORPHISM BETWEEN
BRAUER-CLIFFORD-LONG GROUPS BD(S,H) AND

BD(Sop,H∗)

C. L. NANGO

Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry,

Accepted [46]

Abstract

For a commutative ring R and a commutative cocommutative Hopf algebra H finitely gener-
ated projective as an R-module, Tilborghs in [58], established an anti-isomorphism of groups
between the Brauer group BD(R,H) of H-dimodule and the Brauer BD(R,H∗) of H∗-dimodule
algebras, where H∗ is the linear dual of H. In this paper, we generalize this result by con-
structing an anti-isomorphism of groups between BD(S,H), the Brauer group of dyslectic
(S,H)-dimodule algebras and BD(Sop,H∗), the Brauer group of dyslectic (Sop,H∗)-dimodule
algebras, where S is an H-commutative H-dimodule algebra and Sop is the opposite algebra
of S.

Introduction

In [32], Guédénon and Herman introduced a Brauer-Clifford group for the category of dyslec-
tic Hopf Yetter-Drinfel’d (S,H)-modules algebras BQ(S,H), where H is a Hopf algebra with
bijective antipode , and S a Hopf Yetter-Drinfel’d module algebra which is H-commutative (or
quantum commutative). They used the notion of dyslectic in the aim to make braided, the
monoidal category (SQH ,⊗̃S,γ,S), where the braiding map

γM,N : M⊗̃S N → N⊗̃S M is given by γM,N (m⊗̃S n)= n0⊗̃S (n1m).

When H is commutative and cocommutative, a Hopf Yetter-Drinfel’d H-module becomes an
H-dimodule, from this we study in [33] the Brauer-Clifford group BD(S,H) of dyslectic (S,H)-
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dimodules algebras , where the braiding map making braided the monoidal category (SDH ,⊗̃S,γ′,S),

γ′M,N : M⊗̃S N → N⊗̃S M is given by γ′M,N (m⊗̃S n)= (m1n)⊗̃S m0,

and where the H-commutativity of S comes from γ′. We have concluded our study by es-
tablishing an anti-isomorphism of groups between our Brauer group BD(S,H) of dyslectic
(S,H)-dimodules algebras and the Brauer group BQ(Sop,H) of dyslectic Hopf Yetter-Drinfel’d
(Sop,H)-modules algebras, where Sop is the natural opposite algebra of S.

The Brauer group BD(S,H) of dyslectic (S,H)-dimodule algebras is a generalization of the
Brauer group BD(R,H), constructed by Long in [40], of dimodule algebras for a commutative
ring R and a commutative and cocommutative, finitely generated projective Hopf algebra H
over R. If H is finitely generated projective, H∗ is also a Hopf algebra and H ∼= H∗∗ as Hopf al-
gebras, and, Tilborghs established in [58], an anti-isomorphism of groups between the Brauer-
Long groups BD(R,H) and BD(R,H∗). Our aim in this paper is to generalize this result to the
Brauer-Clifford-Long group BD(S,H) of the category of dyslectic (S,H)-dimodule algebras and
the Brauer-Clifford-Long group BD(Sop,H∗) of the category of dyslectic (Sop,H∗)-dimodule
algebras, where S is H-commutative as an H-dimodule algebra.

After recalling the basic notions and definitions of Hopf algebra in the first part, we show
in the second part that if S is H-commutative as an H-dimodule algebra, then its natural
opposite Sop is H∗-commutative as an H∗-dimodule algebra. Accordinding to [33] the category
D ys-SopDH∗

of dyslectic (Sop,H∗)-dimodule algebras is a braided monoidal category and we
can condider its Brauer group BD(Sop,H∗). In the third part, we end our paper by establishing
an anti-isomorphism of group between BD(S,H) and BD(Sop,H∗).

For more details on Hopf algebras and Brauer groups, we refer to the literature, see for
example [1], [14], [44], [56].

3.1 Preliminaries and notations

Let H be a Hopf algebra over a commutative ring R. We denote its comultiplication by ∆ : H →
H⊗H, its antipode by SH : H → H and its counit by ε : H → R. We will use Sweedler-Heyneman
notation, omitting sums, so we write ∆(h)= h1 ⊗h2.
For a Hopf algebra with comultiplication ∆, ∆cop is defined by

∆cop(h)= h2 ⊗h1.

A Hopf algebra H is said to be cocommutative if

h1 ⊗h2 = h2 ⊗h1,

for all h ∈ H. We will require a sequence of definitions, all of which are standard. An R-algebra
A is an H-module algebra if A is a left H-module such that

h.(ab)= (h1.a)(h2.b) and h.1A = ε(h)1A, for all a,b ∈ A,h ∈ H. (3.1.1)
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H acts trivially on A when h.a = ε(h)a for all h ∈ H and a ∈ A. A homomorphism of H-module
algebras is a homomorphism of H-modules which is also a homomorphism of R-algebras. If
A is an H-module algebra, then the smash product algebra A#H is the R-module A⊗H with
multiplication

(a⊗h)(a′⊗h′)= [a(h1.a′)]⊗ (h2h′), for all a,a′ ∈ A and h,h′ ∈ H. (3.1.2)

An R-module M is a left A#H-module if it is a left A-module and a left H-module for which

h(am)= (h1.a)(h2m), for all h ∈ H,a ∈ A and m ∈ M. (3.1.3)

We will write A#HM for the category of left A#H-modules. It was observed in [31, Theorem
2.2] that if H is cocommutative and A is a commutative H-module algebra, then (A#HM ,⊗A, A)
is a symmetric monoidal category.
If H is a Hopf algebra over R. An R-module M is a right H-comodule if there exists an R-linear
map ρM : M → M⊗H satisfying the relations

(ρM ⊗ idH)◦ρM = (idM ⊗∆)◦ρM and (idM ⊗ε)◦ρM = idM .

In Sweedler notation, we write

ρM (m)= m0 ⊗m1 for all m ∈ M,

and the right H-comodule conditions on M are

m00 ⊗m01 ⊗m1 = m0 ⊗m11 ⊗m12 = m0 ⊗m1 ⊗m2 (3.1.4)

and m0ε(m1)= m, for all m ∈ M.

H coacts trivially on M when m0 ⊗ m1 = m0 ⊗ 1H , for all m ∈ M. Let M and N be right H-
comodules. A homomorphism of right H-comodules (aka. a right H-colinear map) is an R-
linear map f : M → N such that ρN ◦ f = ( f ⊗ idH)◦ρM . In Sweedler notation, this is equivalent
to

f (m)0 ⊗ f (m)1 = f (m0)⊗m1, for all m ∈ M. (3.1.5)

If M and N are right H-comodules, then M ⊗ N is a right H-comodule under the codiagonal
coaction:

(m⊗n)0 ⊗ (m⊗n)1 = (m0 ⊗n0)⊗ (m1n1), m ∈ M,n ∈ N. (3.1.6)

An R-algebra A is an H-comodule algebra if A is a right H-comodule and the multiplication in
A satisfies

(ab)0 ⊗ (ab)1 = (a0b0)⊗ (a1b1) and ρA(1A)= 1A ⊗1H , for all a,b ∈ A. (3.1.7)

A homomorphism of H-comodule algebras is a homomorphism of H-comodules which is also a
homomorphism of R-algebras.
Let A be a right H-comodule algebra. An R-module M is an (A,H)-Hopf module if M is both a
left A-module and a right H-comodule, with the property

(am)0 ⊗ (am)1 = (a0m0)⊗ (a1m1), for all a ∈ A,m ∈ M. (3.1.8)
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A homomorphism of (A,H)-Hopf modules is a left A-linear map which is also a right H-colinear
map. We will write AM H for the category of (A,H)-Hopf modules. This category is dual to
A#HM . When H is commutative and A is a commutative H-comodule algebra, (AM H ,⊗A, A)
is a symmetric monoidal category [31].

For a left H-module M, we denote by λM : H ⊗ M → M the left H-action on M. An H-
dimodule is an R-module M which is also a left H-module and a right H-comodule such that
ρM ◦λM = (λM ⊗ idH)◦ (idH ⊗ρM ), that is:

(hm)0 ⊗ (hm)1 = (hm0)⊗m1, for all h ∈ H,m ∈ M. (3.1.9)

If M and N are H-dimodules, an R-linear map f : M → N is said to be an H-dimodule homo-
morphism if it is simultaneously an H-module homomorphism and an H-comodule homomor-
phism.
An H-dimodule algebra is an R-algebra which is an H-dimodule so that it is an H-module
algebra and an H-comodule algebra satisfying the relation (3.1.9). An H-dimodule algebra
homomorphism between two H-dimodule algebras A and B is an R-linear map A → B which
is simultaneously an H-dimodule homomorphism and an R-algebra homomorphism.
We denote the category of H-dimodules by DH . For H-dimodules M and N, the tensor product
M⊗N has an H-module structure given by

h(m⊗n)= (h1m)⊗ (h2n), for all m ∈ M,n ∈ N, (3.1.10)

and an H-comodule structure given by

(m⊗n)0 ⊗ (m⊗n)1 = (m0 ⊗n0)⊗ (m1n1), for all m ∈ M,n ∈ N. (3.1.11)

These H-structures satisfy the compatibility condition (3.1.9) and make M⊗N an H-dimodule,
denoted by M⊗̃N.
Let H be commutative and cocommutative. For H-dimodules M and N, there exists an H-
dimodule isomorphism γM,N from M⊗̃N to N⊗̃M defined by (see [59])

γM,N (m⊗̃n)= (m1n)⊗̃m0, for all m ∈ M,n ∈ N, (3.1.12)

with inverse is
γ−1

M,N
(n⊗̃m)= m0⊗̃(SH(m1)n), for all m ∈ M,n ∈ N. (3.1.13)

A monoidal category (C ,⊗) is braided if there are natural isomorphisms γM,N : M ⊗ N ∼= N ⊗
M in C for all M, N ∈ C , such that the hexagonal coherence conditions given in Definition
1.6.13 are satisfied, that is:

γM⊗N,P = (γM,P ⊗1)◦ (1⊗γN,P )

and
γM,N⊗P = (1⊗γM,P )◦ (γM,N ⊗1),

for all M, N,P ∈C .
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The natural opposite algebra Aop of A is an isomorphic copy of A as an R-module with the
multiplication given by

aobo = (ba)o for all a,b ∈ A. (3.1.14)

Let A be an H-dimodule algebra, the H-opposite Ā of A is an isomorphic copy of A as an
H-dimodule and the multiplication on Ā is defined by

āb̄ = (a1.b)a0, for all a,b ∈ A. (3.1.15)

Let A be an H-dimodule algebra. The algebras Aop and Ā are H-dimodules algebras (see
[40]).

According to [59, EXAMPLE 3.11], (DH ,⊗̃R ,γM,N ,R) is a braided monoidal category. Note
that an H-dimodule algebra is just an algebra in the braided monoidal category DH .

From Long in [40], we can form the Brauer group of DH denoted by BD(R,H).

From now on, H is commutative cocommutative and finitely generated projective as an R-
module. Let {hi,h∗

i ; i ∈ I} be a finite dual basis of H as an R-module ( where I is a finite set of
index), that is,

∀h ∈ H, h =∑
i
〈h∗

i ,h〉hi and ∀h∗ ∈ H∗, h∗ =∑
i
〈h∗,hi〉h∗

i

Refering to Long in [40] and Pareigis in [47], the dual H∗ of H is also a commutative and
cocommutative Hopf algebra finitely generated projective as an R-module: its comultiplication

∆∗ : H∗ → (H⊗H)∗ ∼= H∗⊗H∗ is given by

[∆∗(h∗)](h⊗h′)= (h∗
(1) ⊗h∗

(2))(h⊗h′)= h∗
(1)(h)h∗

(2)(h
′)= h∗(hh′);

its counit ε∗ : H∗ → R, is given by ε∗(h∗)= h∗(1H),

and its antipode SH∗ : H∗ → H∗, is given by SH∗(h∗)= h∗ ◦SH , f or h∗ ∈ H∗

Note that H∗∗ ∼= H as Hopf algebras. Every H-dimodule M is an H∗-dimodule: the left
H∗-action α∗

M : H∗⊗M → M is given by:

α∗
M(h∗⊗m)= h∗.m = m0h∗(m1), for all h∗ ∈ H∗,m ∈ M, (3.1.16)

and the right H∗-comodule structure ρ∗M : M → M⊗H∗, is given by

ρ∗M(m)= m(0) ⊗m∗
(1) =

∑
i

him⊗h∗
i , (3.1.17)

where (see [58, Proposition: 3,(2)]),

m(0)m∗
(1)(h)= hm for all h ∈ H,m ∈ M (3.1.18)
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Since R is a commutative ring, m(0)m∗
(1)(h)= m∗

(1)(h)m(0) = hm.

The compatibility condition for M to be an H∗-dimodule is given by

(h∗.m)(0) ⊗ (h∗.m)∗(1) = (h∗.m(0))⊗m∗
(1) for all h ∈ H,m ∈ M. (3.1.19)

Since H∗ is commutative and cocommutative, we can consider the category DH∗
of H∗-

dimodules: the objects are the H∗-dimodules and the morphisms are the H∗-dimodule homo-
morphisms (the R-linear maps that are simultaneously left H∗-linear and right H∗-colinear).
We also have the Brauer group BD(R,H∗) of H∗-dimodule algebras. We recall that the braid-
ing map defining the Brauer group BD(R,H∗), γ∗

M,N
: M⊗̃N → N⊗̃M (for M and N two H∗-

dimodules) is given by
γ∗

M,N
(m⊗̃n)= (m∗

(1).n)⊗̃m(0), (3.1.20)

with inverse γ∗
−1

M,N
: N⊗̃M → M⊗̃N defined by

γ∗
−1

M,N
(n⊗̃m)= m(0)⊗̃(SH∗(m∗

(1)).n), for all m ∈ M,n ∈ N. (3.1.21)

With the H∗-dimodule structures defined above, according to Tilborghs in [58], if A is an
H-dimodule algebra, then it is also an H∗-dimodule algebra and so is its opposite algebra
Aop. Also if A is an H-Azumaya H-dimodule algebra, its opposite Aop is an H∗-Azumaya
H∗-dimodule algebra.

By Tilborghs in [58], there is an anti-isomorphism of group between BD(R,H) and BD(R,H∗)
mapping [A] to [Aop] where [A] represents the equivalence class of an H-Azumaya H-dimodule
algebra A. Our aim in this paper is to extend this result to the Brauer group of dyslectic (S,H)-
dimodules.

3.2 The category of (Sop,H∗)-dimodules

Let S be an H-dimodule algebra. An (S,H)-dimodule M is a left S-module (we denote by *
the left S-action) and an H-dimodule satisfying the compatibility conditions (3.1.3) and (3.1.8).

Equivalently, M is a left S#H-module and a right Hopf (S,H)-module for which the relation
(2.1.9) is satisfied. An (R,H)-dimodule is just an H-dimodule. Furthermore, note that if S is
an H-dimodule algebra, then S is an (S,H)-dimodule : the left S-action is given by s * s′ =
ss′, for all s, s′ ∈ S.

An (S,H)-dimodule homomorphism is an H-dimodule map which is also left S-linear. We
denote by SDH , the category consisting of (S,H)dimodules and (S,H)-dimodules homomor-
phisms.

Let S be an H-module algebra. We say that S is H-commutative if

ss′ = (s1.s′)s0, for all s, s′ ∈ S. (3.2.1)
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If S is an H-commutative H-dimodule algebra, then for every left S-action on M ∈ SDH ,
there is a corresponding right S-action denoted by ( and defined by

m( s = (m1.s)*m0, for all s ∈ S,m ∈ M. (3.2.2)

With this S-action, M can be seen as an S-S-bimodule. The right and the left S-action are
related by

s*m = m0 ( (SH(m1).s), for all s ∈ S,m ∈ M. (3.2.3)

Note also that we have

h(m( s)= (h1m)( (h2.s) (3.2.4)

and
(m( s)0 ⊗ (m( s)1 = (m0 ( s0)⊗ (m1s1), for all h ∈ H,m ∈ M, s ∈ S. (3.2.5)

Let S be an H-commutative H-dimodule algebra. Then for M and N in SDH , we can endow
the tensor product M⊗S N with the following S-action, H-action and H-coaction:

s* (m⊗̃S n)= (s*m)⊗̃S n, (3.2.6)

h(m⊗̃S n)= (h1m)⊗̃S (h2n) (3.2.7)

and (m⊗̃S n)0 ⊗ (m⊗̃S n)1 = (m0⊗̃S n0)⊗ (m1n1), (3.2.8)

for all h ∈ H, s ∈ S,m ∈ M, and n ∈ N. Note that we have

(m⊗̃S n)( s = m⊗̃S (n( s), for all m ∈ M,n ∈ N, s ∈ S. (3.2.9)

Throughout this section, H is a commutative and cocommutative Hopf algebra and S is an
H-commutative H-dimodule algebra.

Lemma 3.2.1. Let S be an H-commutative H-dimodule algebra. The opposite algebra Sop of S
is an H∗-commutative H∗-dimodule algebra.

Proof. For all s, t ∈ S, we have,

soto = (ts)o = [(t1.s)t0]o = to
0(t1.so)= to

0[s∗(1)(t1).so
(0)]= [to

0s∗(1)(t1)]so
(0) = (s∗(1).t

o)so
(0)

soto = (s∗(1).t
o)so

(0), then Sop is an H∗-commutative H∗-dimodule algebra.

ä

Since Sop is an H∗-commutative H∗-dimodule algebra, we can form the category SopDH∗
of

(Sop,H∗)-dimodules: its morphisms are the left Sop-linear, H∗-linear and H∗-colinear maps.

Let M be a left (S,H)-dimodule. Then M becomes a left Sop-module when we set :

so.m = m( s for all m ∈ M, s ∈ S. (3.2.10)
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Lemma 3.2.2. M is an (S,H)-dimodule if and only if it is an (Sop,H∗)-dimodule.

Proof. Consider M an (S,H)-dimodule. By (3.2.10), M is a left Sop-module. Let h∗ ∈
H∗,m ∈ M and s ∈ S,

h∗.(so.m) = h∗.(m( s)
= (m( s)0h∗((m( s)1)
= (m0 ( s0)h∗(m1s1)
= (m0 ( s0)h∗

(1)(m1)h∗
(2)(s1)

= (m0h∗
(1)(m1))( (s0h∗

(2)(s1))
= (h∗

(1).m)( (h∗
(2).s)

= (h∗
(1).s)o. (h∗

(2)m)
= (h∗

(1).s
o). (h∗

(2)m).

Let m ∈ M, s ∈ S; we have:

(so.m)(0) ⊗ (so.m)∗(1) = (m( s)(0) ⊗ (m( s)∗(1) = (m0 ( s0)⊗ (m1s1)∗ = (so
(0).m(0))⊗ (s∗(1)m

∗
(1)).

Then the H∗-coaction and the Sop-action on M are compatible. We know that M is an H∗-
dimodule.

Now, let M be an (Sop,H∗)-dimodule. Clearly, M is a left S-module and an H-dimodule.
For all m ∈ M, s ∈ S and h ∈ H, we have

h(s*m) = h[m0 ( (SH(m1).s)]
= h[(SH(m1).s)o.m0]
= [h1.(SH(m1).s)]o. (h2m0)
= [SH(m1).(h1.s)]o. (h2m0)
= (h2m0)( [SH(m1).(h1.s)]
= (h2m)0 ( [SH((h2m)1).(h1.s)]
= (h1.s)* (h2m)

(s*m)0 ⊗ (s*m)1 = [m0 ( SH(m1).s]0 ⊗ [m0 ( SH(m1).s]1
= [(SH(m1).s)o.m0]0 ⊗ [(SH(m1).s)o.m0]1
= [(SH(m1).so

0).m00]⊗ (s1m01)
= [m00 ( (SH(m01).s0)]⊗ (s1m1)
= (s0 *m0)⊗ (s1m1)

Then M is an (S,H)-dimodule.

ä
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Let M ∈ SopDH∗
. Since Sop is an H∗-commutative H∗-dimodule algebra, by (3.2.2), there is a

corresponding right Sop-action on M defined by:

m/ so = (m∗
(1).s

o).m(0), for all m ∈ M, s ∈ S. (3.2.11)

This allows us to view M as an Sop-Sop-bimodule. Note that the right Sop-action and the
right S-action on M are related by:

m/ so = (s1m)( s0, for all m ∈ M, s ∈ S. (3.2.12)

since we have:

m/ so = (m∗
(1).s

o).m(0) = (m∗
(1)(s1).so

0).m(0) = so
0. (m∗

(1)(s1)m(0))= so
0. (s1m)= (s1m)( s0.

Note also that by (3.2.3), the left Sop-action and the right Sop-action on M are related by

so.m = m(0)/ (S∗
H(m∗

(1)).s
o), for all m ∈ M, s ∈ S. (3.2.13)

By (3.2.4) and (3.2.5) we have, for all m ∈ M, s ∈ S and h∗ ∈ H∗,

h∗(m/ so)= (h∗
(1).m)/ (h∗

(2).s
o) (3.2.14)

and (m/ so)0 ⊗ (m/ so)∗(1) = (m(0)/ so
(0))⊗ (m∗

(1)s
∗
(1)) (3.2.15)

For all M and N in SopDH∗
, we can endow the tensor product M⊗̃Sop N with the following

Sop-action, H∗-module and H∗-comodule structures:

so. (m⊗̃Sop n)= (so.m)⊗̃Sop n, (3.2.16)

h∗(m⊗̃Sop n)= (h∗
(1)m)⊗̃Sop (h∗

(2)n), (3.2.17)

and (m⊗̃Sop n)(0) ⊗ (m⊗̃Sop n)∗(1) = (m(0)⊗̃Sop n(0))⊗ (m∗
(1)n

∗
(1)); (3.2.18)

for all m ∈ M,n ∈ N, s ∈ S and h∗ ∈ H∗. We note that

(m⊗̃Sop n)/ so = m⊗̃Sop (n/ so). (3.2.19)

With these structures defined above, M⊗̃Sop N is an (Sop,H∗)-dimodule.

According to [33], (SopDH∗
,⊗̃Sop ,Sop) is a monoidal category.

Let M be an (S,H)-dimodule. M is said to be a dyslectic (S,H)-dimodule if

hM ◦γM,S ◦γS,M = hM ,

where hM : S⊗M → M denotes the left S-action on M. In other words, an object M of SDH is
dyslectic if and only if (see [33, (31) and (32)])
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s*m = [(s1m)1.s0]* (s1m)0 = (m1.s0)* (s1m0), (3.2.20)

for s ∈ S,m ∈ M. According to [33], its equivalent right condition is

m( s = s0 * (SH(s1)m). (3.2.21)

A dyslectic (S,H)-dimodule homomorphism is an (S,H)-dimodule homomorphism between
dyslectic (S,H)-dimodules.

From Lemma 4.1 and Lemma 4.2 of [33], the fact that the conditions (3.2.20) and (3.2.21)
are satisfied induces a well-defined braiding map

γM,N : M⊗̃S N → N⊗̃S M; m⊗̃S n 7→ (m1n)⊗̃S m0

with inverse
γ−1

M,N
: N⊗̃S M → M⊗̃S N; n⊗̃S m 7→ m0⊗̃S (SH(m1)n),

which is also well-defined.

D ys-SDH denotes the category of dyslectic (S,H)-dimodules with (S,H)-dimodules homo-
morphisms, it is a full subcategory of SDH . For M, N ∈ D ys-SDH , by [33, Lemma 4.3], M⊗̃S N
is also in D ys-SDH , and by [33, Theorem 4.4], (D ys-SDH ,⊗̃S,S,γM,N ) is a braided monoidal
category.

Since Sop is H∗-commutative, we can consider the category of dyslectic (Sop,H∗)-dimodule
with (Sop,H∗)-dimodule homomorphisms, it is a full subcategory of SopDH∗

. It follows from [33,
Theorem 4.4] that (D ys-SopDH∗

,⊗̃Sop ,Sop,γ∗
M,N

) is a braided monoidal category. We recall that
γ∗

M,N
is defined from M⊗̃Sop N to N⊗̃Sop M by

γ∗
M,N

(m⊗̃Sop n)= (m∗
(1).n)⊗̃Sop m(0)

for all objects M and N in D ys-SopDH∗
.

Lemma 3.2.3. i) M is a dyslectic (S,H)-dimodule if and only if M is a dyslectic (Sop,H∗)-
dimodule.

ii) The two braiding maps are related by γM,N = τM,N ◦γ∗N,M
◦τM,N , where M, N ∈ D ys-SDH

and τM,N is the flip map.

Proof.

i) Let M be an object of D ys-SDH . For all m ∈ M, s ∈ S, we have
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so.m = m( s (3.2.2)= (m1.s)*m0
(3.2.20)= [m1.(m2.s0)]* (s1m0)
= [m2.(m1.s0)]* (s1m0)
(3.1.18)= [m2.(s(00)s∗(01)(m1))]* [m(00)m∗

(01)(s1)]
= [m2.(s(00)m∗

(01)(s1))]* [m(00)s∗(01)(m1)]
= [m2.(s(00)m∗

(1)(s01))]* [m(00)s∗(1)(m01)]
(3.1.16)= [m2.(m∗

(1).s0)]* (s∗(1)m0)
= [m1.(m∗

(2).s0)]* (s∗(1)m0)
= [m01.(m∗

(1).s0)]* (s∗(1)m00)
(2.1.9)= [(s∗(1)m0)1.(m∗

(1).s0)]* (s∗(1)m0)0
(3.2.2)= (s∗(1)m0)( (m∗

(1).s0)
= (m∗

(1).s
o
0). (s∗(1)m0)

then M ∈ D ys-SopDH∗
. Now let M be an object of D ys-SopDH∗

. For every m ∈ M, s ∈ S, we
have:

m( s = so.m = m(0)/ (S∗
H(m∗

(1)).s
o)

= (S∗
H(m∗

(1)).s
o)(0). [S∗

H(S∗
H(m∗

(1)).s
o)∗(1)m(0)]

= (S∗
H(m∗

(1)).s
o
(0)). (S∗

H(s∗(1))m(0))
= [so

(00)S
∗
H(m∗

(1))(s(01))]. [m(00)S∗
H(s∗(1))(m(01))]

= [so
(00)m

∗
(1)(SH(s(01)))]. [m(00)s∗(1)(SH(m(01)))]

= [so
(00)s

∗
(1)(SH(m(01)))]. [m(00)m∗

(1)(SH(s(01)))]
= [SH(m1).so

0]. [SH(s1)m0]
= [SH(m1).s0]o. [SH(s1)m0]
= [SH(s1)m0]( [SH(m1).s0]
= (SH(s1)m)0 ( [SH((SH(s1)m)1).s0]
= s0 * (SH(s1)m)

We deduce that, (M ∈ D ys-SopDH∗
)⇒ (M ∈ D ys-SDH).

ii) Let m ∈ M,n ∈ N, then

γM,N (m⊗̃S n) = (m1.n)⊗̃S m0
= (n(0)n∗

(1)(m1))⊗̃Sop m0

= n(0)⊗̃Sop (n∗
(1)(m1)m0)

= n(0)⊗̃Sop (n∗
(1)m)

= τM,N ((n∗
(1)m)⊗̃Sop n(0))

= (τM,N ◦γ∗
N,M

)(n⊗̃Sop m)
= (τM,N ◦γ∗

N,M
◦τM,N )(m⊗̃Sop n)
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ä

Remark 3.2.4. Note that if M is a dyslectic (S,H)-dimodule, then

m/ so = s*m, for all m ∈ M, s ∈ S. (3.2.22)

In fact,

m/ so (3.2.12)= (s1m)( s0
(3.2.2)= ((s1m)1.s0)* (s1m)0

(2.1.9)= (m1.s0)* (s1m0) (3.2.20)= s*m. ä

Proposition 3.2.5. We have an isomorphism of categories F : D ys-SDH → D ys-SopDH∗
.

Proof. For all M ∈ D ys-SDH , we have F (M) = M ∈ D ys-SopDH∗
from Lemma 3.2.2 and

3.2.3. Let M, N ∈ D ys-SDH and f : M → N, a morphism of D ys-SDH . We also have F ( f ) = f ∈
D ys-SopDH∗

; since, for all s ∈ S,m ∈ M;

f (so.m) = f (m( s)
= f ((m1.s)*m0)
= (m1.s)* f (m0)
= ( f (m)1.s)* f (m)0
= f (m)( s
= so. f (m);

that is f is Sop-linear.

f (h∗m)= f (m0h∗(m1))= f (m0)h∗(m1)= f (m)0h∗( f (m)1)= h∗ f (m)

and

f (m)(0) ⊗ f (m)∗(1) =∑
i hi. f (m)⊗h∗

i
=∑

i f (him)⊗h∗
i

= f (m(0))⊗m∗
(1);

that is, f is left H∗-linear and right H∗-colinear.

The insverse functor of F is the functor G : D ys-SopDH∗ → D ys-SDH such that, for all
M ∈ D ys-SopDH∗

; G (M)= M ∈ D ys-SDH .

ä

3.3 Anti-isomorphism between BD(S,H) and BD(Sop,H∗)

In [33], we saw that D ys-SDH = (D ys-SDH ,⊗̃S,S,γ), the category of dyslectic (S,H)-dimodules
is a braided monoidal category and is an abelian full subcategory of SDH the category of (S,H)-
dimodules.

Brauer groups in some braided monoidal categories C. L. NANGO ©UASZ/UFR-ST/LMA/Hopf Algebra, 2021



CHAPTER 3. AN ANTI-ISOMORPHISM BETWEEN BRAUER-CLIFFORD-LONG GROUPS BD(S,H) AND BD(SOP ,H∗) 96

Let us denote by D ys-SDH-rev = (D ys-SDH-rev,⊗̃rev
S ,S,γrev) the reverse braided monoidal

category of D ys-SDH : we have D ys-SDH-rev = D ys-SDH as a category with the same unit
S, for two objects M, N ∈ D ys-SDH-rev, M⊗̃rev

S N = N⊗̃S M, for two morphisms f and g in
D ys-SDH-rev , f ⊗̃rev

S g = g⊗̃S f , and the braiding γrev
M,N

is equal to γN,M .

All the results established in [33] leading to the definition of the Brauer group BD(S,H)=
Br(D ys-SDH) for the category D ys-SDH are also valid for the category D ys-SDH-rev and lead
to the Brauer group Br(D ys-SDH-rev) and we have:

Br(D ys-SDH-rev)∼= BD(S,H)op. (3.3.1)

Now let’s consider the braided monoidal category D ys-SopDH∗
, the category consisting of

dyslectic (Sop,H∗)-dimodules and dyslectic (Sop,H∗)-dimodule homomorphisms, that is, the
left Sop#H∗-linear right H∗-colinear maps. With this category, we obtain the Brauer group
denoted BD(Sop,H∗) of dyslectic (Sop,H∗)-dimodule Azumaya algebras.

Let M and N be two objects of D ys-SDH . We define the map ϕ0 : Sop →F (S) = S, it is the
unit and a family of maps

ϕ2(M, N) : F (M)⊗̃SopF (N)= M⊗̃Sop N →F (M⊗̃rev
S N)= N⊗̃S M; m⊗̃Sop n 7→ n⊗̃Sm.

Theorem 3.3.1. The functor

(F ,ϕ0 ,ϕ2) : D ys-SDH-rev → D ys-SopDH∗

is an isomorphism of braided monoidal categories. Consequently

BD(S,H)op ∼= BD(Sop,H∗),

as isomorphism of groups. This means that BD(S,H) and BD(Sop,H∗) are anti-isomorphics
Brauer-Clifford-Long groups.

Proof. For s ∈ S,m ∈ M and n ∈ N,

ϕ2(M, N)((m/ so)⊗̃Sop n) =ϕ2(M, N)((m/ so)⊗̃Sop n)
=ϕ2(M, N)((s*m)⊗̃Sop n)
= n⊗̃S(s*m)
= (n( s)⊗̃Sm
=ϕ2(M, N)(m⊗̃Sop (n( s))
=ϕ2(M, N)(m⊗̃Sop (so.n));

then ϕ2(M, N) is well-defined.

ϕ2(M, N)[so. (m⊗̃Sop n)] =ϕ2(M, N)[(so.m)⊗̃Sop n]
=ϕ2(M, N)[(m( s)⊗̃Sop n]
= n⊗̃S(m( s)
= (n⊗̃Sm)( s
= so. (n⊗̃Sm)
= so.ϕ2(M, N)(m⊗̃Sop n)
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ϕ2(M, N)(h∗(m⊗̃Sop n)) =ϕ2(M, N)((h∗
1m)⊗̃Sop (h∗

2n))
= (h∗

2n)⊗̃S(h∗
1m)

= (h∗
1n)⊗̃S(h∗

2m)
= h∗(n⊗̃Sm)
= h∗ϕ2(M, N)(m⊗̃Sop n)

[ϕ2(M, N)(m⊗̃Sop n)](0) ⊗ [ϕ2(M, N)(m⊗̃Sop n)]∗(1) = (n⊗̃Sm)(0) ⊗ (n⊗̃Sm)∗(1)
= (n(0)⊗̃Sm(0))⊗ (n∗

(1)m
∗
(1))

=ϕ2(M, N)(m(0)⊗̃Sop n(0))⊗ (m∗
(1)n

∗
(1))

=ϕ2(M, N)((m⊗̃Sop n)(0))⊗ (m⊗̃Sop n)∗(1)

that is, ϕ2(M, N) is left Sop-linear, H∗-linear and H∗-colinear. It is clear that ϕ2(M, N) is an
isomorphism. According to [37, Definition. XI.4.1], (F ,ϕ0 ,ϕ2) is a monoidal functor. Now let’s
show that the funtor (F ,ϕ0 ,ϕ2) preserves the braiding. This means that the following diagram
commutes

M⊗̃Sop N

ϕ2 (M,N)
��

γ∗
M,N // N⊗̃Sop M

ϕ2 (N,M)
��

N⊗̃S M
γN,M=γrev

M,N

// M⊗̃S N

Let m ∈ M and n ∈ N, we have

[ϕ2(N, M)◦γ∗
M,N

](m⊗̃Sop n) =ϕ2(N, M)[(m∗
(1)n)⊗̃Sop m(0)]

= m(0)⊗̃S(m∗
(1)n)

(3.1.16)= m(0)⊗̃S(n0m∗
(1)(n1))

= (m(0)m∗
(1)(n1))⊗̃Sn0

(3.1.18)= (n1m)⊗̃Sn0
= γN,M (n⊗̃Sm)
= γN,M [ϕ2(M, N)(m⊗̃Sop n)]
= [γN,M ◦ϕ2(M, N)](m⊗̃Sop n)
= [γrev

M,N
◦ϕ2(M, N)](m⊗̃Sop n)

ϕ2(N, M) ◦γ∗
M,N

= γrev
M,N

◦ϕ2(M, N) then the diagram commutes, that is F preserves the braid-
ing. It is clear that F : D ys-SDH-rev → D ys-SopDH∗

is an isomorphism of functors. Therefore
(F ,ϕ0 ,ϕ2) is a braided monoidal functor and we immediately have

Br(D ys-SDH-rev)∼= BD(Sop,H∗), (3.3.2)

as isomorphism of groups. Finally we have

BD(S,H)op (3.3.1)∼= Br(D ys-SDH-rev)
(3.3.2)∼= BD(Sop,H∗)
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ä

Remark 3.3.2. In [33], we have shown that, for a commutative cocommutative Hopf alge-
bra H and an H-commutative H-dimodule algebra S, there is an anti-isomorphism of groups
BD(S,H)∼= BQ(Sop,H) mapping [A] to [[Aop]], where BQ(Sop,H) is the Brauer group of dyslec-
tic Hopf Yetter-Drinfel’d (Sop,H)-module Azumaya algebras. Therefore if H is commutative and
cocommutative finitely generated projective Hopf algebra and S a H-commutative H-dimodule
algebra, we have BQ(Sop,H)∼= BD(Sop,H∗) as isomorphism of groups.

In many applications, H could be the group algebra RG of a finite abelian group G (for
example the cyclic group of order 2) or the set Maps(G,k) of all maps from G to k, where G is
a finite abelian group and k is a field.
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Chapter 4

ROSENBERG-ZELINSKY EXACT SEQUENCE

abstract

In this chapter, we generalize the Rosenberg-Zelinsky sequence to dyslectic Hopf Yetter-Drinfel’d
(S,H)-module Azumaya algebras which terms are the group of all H-inner (H-INNER) S-
algebra automorphisms of an algebra A ∈ D ys-SQH and the group of isomorphism classes of
invertible S-modules (invertible dyslectic Hopf Yetter-Drinfeld (S,H)-modules) under the ten-
sor product ⊗̃S denoted Pic(S) (PQH(S,H)). When H is a commutative cocommutative Hopf
algebra, the dyslectic (T,H)-dimodule version of the Rosenberg-Zelinsky exact sequence is also
given.

Introduction

Throughout the paper, R will denote a commutative ring with 1. All of the R-algebras and
R-modules we will consider here are symmetric R-R-bimodules. A right (left) R-module is
faithfully projective if it is finitely generated projective and faithfull as a right (left) R-module.
All unadorned tensor products and sets of module homomorphisms are intended to be over R
and will be specified if otherwise.

In their study to show that for any commutative ring R (here C = R) and for any simple
central R-algebra A, J (R) (the abelian group under the operation ⊗ of isomorphism classes of
finitely generated, projective R-modules of rank one) contains a subgroup which is isomorphic
to a group of automorphisms modulo the inner ones in [51], Rosenberg and Zelinsky established
and proved that the sequence

1−→ Aut(A) α−→J (R)
β−→J (A)−→ 1

is an exact sequence, were A is a central simple R-algebra, Aut(A) denotes the abelian group of
automorphisms of A modulo the inner ones and J (A) is the set of left A-isomorphism classes of
left A⊗ Aop-modules which are finitely generated and projective as R-modules. This sequence
is called in the literature the Rosenberg-Zelinsky exact sequence. Subsequently several ver-
sions of this sequence have been defined for other spaces for example [21, Theorem 3.1], [13],
[17, Proposition 3.5], [14, Theorem 13.6.1], [39, Section 4.1], [10]. . .
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Let A be a Yetter-Drinfeld H-module algebra. Denote by H-Aut(A) the group of all Yetter-
Drinfeld H-module algebra automorphisms of A. An H-automorphism f of A is called H-
INNER if there exists an invertible element x ∈ A such that f (a) = xax−1 for all a ∈ A. The
subgroup of H-Aut(A) consisting of H-INNER automorphisms of A will be denoted by H-
INN(A). f ∈ H-Aut(A) is called H-inner if there exist an invertible element x ∈ A and a
grouplike element g ∈G(H) (the set of grouplike elements ot H) such that f (a) = x(g.a)x−1 for
all a ∈ A. Denote by PQ(R,H) the group of isomorphism classes of invertible Yetter-Drinfeld
H-modules under the tensor product and called the Picard group of the Hopf algebra H. For
an H-Azumaya algebra A, Caenepeel, Oystaeyen and Zhang [17, Proposition 3.5] give the gen-
eralized Rosenberg-Zelinsky exact sequence

1−→ H-INN(A)−→H-Aut(A) Φ−→ PQ(k,H)

where
Φ( f )= I f = {x ∈ A |∑x0(x1.a)= f (a), ∀x ∈ A}

Now let H be a commutative cocommutative finitely generated and projective Hopf algebra
over R and A an H-Azumaya H-dimodule algebra. Let H-Aut(A) be the group of all H-linear,
H-colinear R-automorphisms of A. In [14, Theorem 13.6.1], Caenepeel established a Dimodule
version of the Rosenberg-Zelinsky exact sequence

1−→ H-INN(A)−→H-Aut(A) Φ−→ PD(R,H)

and
1−→ H-Inn(A)−→H-Aut(A) Ψ−→ Pic(R),

where H-Inn(A) is the group of inner automorphisms of A that is the set of elements α ∈
H-Aut(A) for which there exists an invertible u ∈ A such that

α(x)=∑
(x1.u)x0u−1, ∀x ∈ A.

If the action and the coaction of H on u ∈ A are all trivial, α ∈ H-Inn(A) is called H-INNER
and H-INN(A) denotes the subgroup of H-Aut(A) consiting of H-INNER automorphisms of
A. Pic(R) denotes the group of isomorphism classes of invertible R-modules called the Picard
group of R and PD(R,H) the group of isomorphism classes of invertible H-dimodules algebras
under the tensor product ⊗, called the Picard group of H-dimodules algebras.

In this chapter, our first aim is to give a version of the Rosenberg-Zelinsky exact sequences
for the dyslectic Hopf Yetter-Drinfel’d (S,H)-module Azumaya algebras (where S is an H-
commutative Hopf Yetter-Drinfel’d H-module algebra, see [32]) and the dyslectic (S,H)-dimodule
Azumaya algebras ( where S is an H-commutative H-dimodule algebra and H a commutative,
cocommutative Hopf algebra, see [33]).

Our work is carried out according to the following plan: in the Section 4.1, we have given
the preliminary notions of Hopf algebras and recalled the results of [32] for the dyslectic Hopf
Yetter-Drinfel’d (S,H)-module adding some small results and ingredients which are useful for
the following sections. In the Section 4.2 we have established the Morita context for the cate-
gory D ys-SQH of the dyslectic Hopf Yetter-Drinfel’d (S,H)-module Azumaya algebras, before
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giving in Section 4.3 the main results of this paper, namely the Rosenberg-Zelinsky exact se-
quence for the category D ys-SQH . If H is commutative and cocommutative Hopf algebra, then
Yetter-Drinfel’d H-modules become H-dimodules. Adopting the results of [33], taking into ac-
count to the braiding of H-dimodules in Section 4.4 to establish the sequence for the category
D ys-SDH of dyslectic (S,H)-dimodule Azumaya algebras.

4.1 Dyslectic Hopf Yetter-Drinfeld (S,H)-module al-
gebras

For background on Hopf algebras and coactions of Hopf algebras on rings, we refer the reader
to [56] and [44]. Let H be a Hopf R-algebra with comultiplication ∆H : H → H ⊗H, antipode
SH : H → H and counit εH : H → R. We will use Sweedler-Heyneman notation but we will omit
the symbol

∑
:

∆H(h)= h1 ⊗h2, ∀h ∈ H.

We say that an R-algebra A is an H-module algebra if A is a left H-module such that

h.(ab)= (h1.a)(h2.b) and h.1A = εH(h)a, ∀ a,b ∈ A,h ∈ H. (4.1.1)

A homomorphism of H-module algebras is a homomorphism of H-modules which is also a
homomorphism of R-algebras. H is said to act trivially on A when h.a = εH(h)a for all h ∈ H
and a ∈ A.

If S is an H-module algebra, then the smash product algebra S#H is the R-module S⊗H
endowed with the product

(s⊗h)(s′⊗h′)= s(h1.s′)⊗h2h′, for all s, s′ ∈ S and h,h′ ∈ H. (4.1.2)

An R-module M is a left S#H-module if it is a left S-module and a left H-module for which

h.(sm)= (h1.s)(h2m) (4.1.3)

for all h ∈ H, s ∈ S and m ∈ M. If A is an H-module algebra and S is a sub-H-module algebra
of A, then the algebras A and S are left S#H-modules.

Let us denote by S#HM the category of S#H-modules.

Let H be a Hopf algebra. An R-module M is a right H-comodule if there exists an R-linear
map ρM : M → M⊗H satisfying

(ρM ⊗ idH)◦ρM = (idM ⊗∆H)◦ρM and (idM ⊗εH)◦ρM = idM .

We write ρM(m)= m0 ⊗m1 for m ∈ M.

By [44, Example 1.6.7] or [40, Proposition 2.2], if H = kG is a group algebra, then M is a
right H-comodule if and only if M is a left G-graded module.
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Let M and N be right H-comodules. A homomorphism of right H-comodules or a right
H-colinear map M → N is an R-linear map f : M → N such that ρN ◦ f = ( f ⊗ idH) ◦ρM ; in
Sweedler’s notation, this is equivalent to

f (m)0 ⊗ f (m)1 = f (m0)⊗m1 (4.1.4)

If M and N are right H-comodules, then M⊗N is a right H-comodule under the codiagonal
coaction; that is,

ρ(m⊗n)= (m0 ⊗n0)⊗ (m1n1), ∀m ∈ M,n ∈ N (4.1.5)

If M is finitely generated projective as an R-module or if H is finitely generated projective
as an R-module, then we have a natural R-isomorphism Hom(M, N⊗H)∼= Hom(M, N)⊗H (see
[12, Proposition 2 or Proposition 4, Chapter 2]). Using this isomorphism, we define an R-linear
map

ρ : Hom(M, N)−→ Hom(M, N)⊗H; f 7−→ f0 ⊗ f1

by
ρ( f )(m)= f0(m)⊗ f1 = f (m0)0 ⊗ [S−1

H (m1) f (m0)1] (4.1.6)

defining a right H-comodule structure on Hom(M, N) if M is finitely generated and projec-
tive as an R-module or if H is finitely generated projective as an R-module.

In this paper, Hom(M, N) and M ⊗N (if M and N are right H-comodules that are finitely
generated projective as R-modules) will be considered as H-comodules with the H-coaction
defined above unless explicitly stated otherwise.

We say that an R-algebra A is an H-comodule algebra if A is a right H-comodule such that

ρ(ab)= (a0b0)⊗ (a1b1), and ρ(1A)= 1A ⊗1H ∀a,b ∈ A. (4.1.7)

A homomorphism of H-comodule algebras is a homomorphism of H-comodules which is also a
homomorphism of R-algebras. The coaction of H on A is trivial when ρ(a)= a⊗1H for all a ∈ A.

Let S be a right H-comodule algebra. An R-module M is an (S,H)-Hopf module if M is a
left S-module and a right H-comodule such that

(sm)0 ⊗ (sm)1 = (s0m0)⊗ (s1m1). (4.1.8)

A homomorphism of (S,H)-Hopf modules is a left S-linear right H-colinear map.

Definition 4.1.1. Let H be a Hopf algebra with bijective antipode. A left Yetter-Drinfeld H-
module M is an R-module with an H-action and an H-coaction such that the following compat-
ibility relation holds, for all m ∈ M and h ∈ H;

ρM (hm)= (hm)0 ⊗ (hm)1 = (h2m0)⊗ (h3m1S−1
H (h1)) (4.1.9)
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Yetter-Drinfeld modules are sometimes called crossed modules, or Quantum Yang-Baxter
modules. If H is commutative and cocommutative , then the relation (4.1.9) becomes (2.1.9)
that is:

ρM (hm)= (hm0)⊗m1 (4.1.10)

and we see that Yetter-Drinfeld modules generalize dimodules.

Definition 4.1.2. A Hopf Yetter-Drinfeld H-module algebra is an R-algebra which is a Hopf
Yetter-Drinfeld H-module so that it is a left H-module algebra and a right Hop-comodule alge-
bra satisfying the relation (4.1.9).

A Hopf Yetter-Drinfeld H-module homomorphism between two Hopf Yetter-Drinfeld H-
modules M and N is an R-linear homomorphism M → N which is simultaneously an H-module
homomorphism and an Hop-comodule homomorphism. A Hopf Yetter-Drinfeld H-module alge-
bra homomorphism between two Hopf Yetter-Drinfeld H-module algebras A and B is an R-
linear map A → B which is simultaneously a Hopf Yetter-Drinfeld H-module homomorphism
and an R-algebra homomorphism. If H is commutative and cocommutative, then a Yetter-
Drinfeld module algebra is nothing else then an H-dimodule algebra.

The tensor product of two Yetter-Drinfeld modules M and N is again a Yetter-Drinfeld
module. The H-action on M⊗N is the diagonal action

h(m⊗n)= (h1m)⊗ (h2n), (4.1.11)

for all h ∈ H,m ∈ M,n ∈ N, and the H-coaction is given by the codiagonal coaction (formula
(4.1.5)). The category of Yetter-Drinfeld H-modules and H-linear Hop-colinear maps is denoted
by QH .

In the sense of Maclane (see [42]), the category (QH ,⊗,R) is a monoidal category.

The monoidal category (C ,⊗) is braided if for all M, N and P ∈ C there exists a natural
isomorphism γM,N : M ⊗N → N ⊗M such that the following conditions are satistafied (see [44,
p.198])

γM⊗P,N = (γM,P ⊗ IN )◦ (IM ⊗γN,P ) and γM,N⊗P = (IN ⊗γM,P )◦ (γM,N ⊗ IP ).

For all objects M and N in QH , the map

γM,N : M⊗N → N ⊗M; m⊗n 7→ n0 ⊗ (n1m),

∀m ∈ M,n ∈ N, is an isomorphism in QH for which the inverse γ−1
M,N

from N ⊗M to M ⊗N, is
given by

γ−1
M,N

(n⊗m)= (SH(n1)m)⊗n0.

By [18] and [17], (QH ,⊗,R,γM,N ) is a braided monoidal category.

Definition 4.1.3. Let S be a Hopf Yetter-Drinfeld H-module algebra. A Hopf Yetter-Drinfeld
(S,H)-module is an S-module and a Hopf Yetter-Drinfeld H-module M such that the H-action
and the H-coaction commute with the S-action, or equivalently, M is a left S#H-module and a
right (S,Hop)-Hopf module (with the same S-action) for which the relation (4.1.9) is satisfied.
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If S is a Hopf Yetter-Drinfeld H-module algebra, then S is a Hopf Yetter-Drinfeld (S,H)-
module. A Hopf Yetter-Drinfeld (R,H)-module is just a Hopf Yetter-Drinfeld H-module.

A Hopf Yetter-Drinfeld (S,H)-module map between two Hopf Yetter-Drinfeld (S,H)-modules
M and N is an S-linear homomorphism M → N which is also a Hopf Yetter-Drinfeld H-module
map. We denote by SQH the category of Hopf Yetter-Drinfeld (S,H)-modules: its morphisms
are the Hopf Yetter-Drinfeld (S,H)-module maps.

Definition 4.1.4. A Hopf Yetter-Drinfeld H-module algebra S is said to be H-commutative (or
quantum commutative) if

st = t0(t1.s), ∀s, t ∈ S. (4.1.12)

If S is defined as above, we can define the corresponding right S-action and the left S-action
on M ∈ SQH by

ms = s0(s1m) (4.1.13)

and
sm = (SH(s1)m)s0, (4.1.14)

for all m ∈ M, s ∈ S. From this, M becomes an S-S-bimodule.

If S is an H-commutative Yetter-Drinfeld H-module algebra, the left H-action and the right
S-action on M are compatible, that is

h(ms)= (h1m)(h2.s), ∀h ∈ H,m ∈ M, s ∈ S (4.1.15)

and the right H-coaction is also compatible with the right S-action on M, that is,

(ms)0 ⊗ (ms)1 = (m0s0)⊗ (s1m1) ∀m ∈ M, s ∈ S. (4.1.16)

Let S be an H-commutative Hopf Yetter-Drinfeld H-module algebra and ⊗S denotes tensor
product over S. If M and N are objects of SQH , then, so is M ⊗S N (see [17]) where the left
S-action, the left H-action and the right H-coaction on M⊗S N are given by the formulas

s(m⊗S n)= (sm)⊗S n, (4.1.17)

h(m⊗S n)= (h1m)⊗S (h2n) (4.1.18)

(m⊗S n)0 ⊗ (m⊗S n)1 = (m0 ⊗S n0)⊗ (n1m1) (4.1.19)

for all s ∈ S,h ∈ H,m ∈ M and n ∈ N. The corresponding right S-action on M⊗S N is given by

(m⊗S n)s = m⊗S (ns). (4.1.20)

According to [18] the category (SQH ,⊗S,S) is a monoidal category.

Let S be an H-commutative Hopf Yetter-Drinfeld H-module algebra and M and N two
Hopf Yetter-Drinfeld (S,H)-modules, in this part HomS(M, N) is the set of right S-linear maps
from M to N and SHom(M, N) the set of left S-linear maps. According to [32, Lemma 2.1]
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HomS(M, N) is a left S#H-module, where the left S-action and H-action are respectively given
by

(s f )(m)= s f (m) (4.1.21)

and
(h. f )(m)= h1[ f (SH(h2)m)] (4.1.22)

for all s ∈ S,m ∈ M,n ∈ N,h ∈ H and f ∈ HomS(M, N). If M is finitely generated projective
as a right S-module, then HomS(M, N) is a Hopf Yetter-Drinfeld (S,H)-module where the
H-coaction is defined by formula (4.1.6). By [32, Lemma 2.3], we have an isomorphism of
R-modules

S#H HomHop
(M⊗S N,P)∼= S#H HomHop

(M,HomS(N,P)).

Similarly, from [32, Lemma 2.2] SHom(M, N) is a left S#H-module where the left S-action and
H-action are respectively given by

(s f )(m)= f (ms) (4.1.23)

and
(h. f )(m)= h2[ f (S−1

H (h1)m)] (4.1.24)

for all s ∈ S,m ∈ M,n ∈ N,h ∈ H and f ∈ SHom(M, N). If M is finitely generated and projec-
tive as a right S-module, then SHom(M, N) is a Hopf Yetter-Drinfeld (S,H)-module where the
H-coaction is defined by

f (m)0 ⊗ f1 = f (m0)0 ⊗ [ f (m0)1SH(m1)]. (4.1.25)

By [32, Lemma 2.4], we have an isomorphism of R-module

S#H HomHop
(M⊗S N,P)∼= S#H HomHop

(M,SHom(N,P)).

We deduce from [32, Lemma 2.3], that if P finitely generated and projective as a right
S-module, then 

HomS(P,•) : SQH −→ SQH

•⊗S P : SQH −→ SQH

is a pair of adjoint functors.

Similarly, we deduce from [32, Lemma 2.4], that if P finitely generated and projective as a
left S-module, then 

SHom(P,•) : SQH −→ SQH

P ⊗S • : SQH −→ SQH

is pair of adjoint functors.
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Definition 4.1.5. A dyslectic Hopf Yetter-Drinfeld (S,H)-module M is a Hopf Yetter-Drinfeld
(S,H)-module such that αM ◦γM,S ◦γS,M =αM , where αM denotes the left S-action on M. In other
words, M is dyslectic if

sm = m0(m1.s), ∀m ∈ M, s ∈ S, (4.1.26)

its right equivalent condition is
ms = (SH(m1).s)m0 (4.1.27)

Note that S is a dyslectic Hopf Yetter-Drinfeld (S,H)-module, and every Hopf YetterDrin-
feld H-module can be regarded as a dyslectic Hopf Yetter-Drinfeld (R,H)-module. A Hopf
Yetter-Drinfeld (S,H)-module homomorphism between dyslectic Hopf Yetter-Drinfeld (S,H)-
modules is called dyslectic Hopf Yetter-Drinfeld (S,H)-module homomorphism. The category
of dyslectic Hopf Yetter-Drinfeld (S,H)-modules with dyslectic Hopf Yetter-Drinfeld (S,H)-
modules homomorphisms is denoted by D ys-SQH . It is a full subcategory of SQH .

According to [32, Lemma 3.4] for M and N two dyslectic Hopf Yetter-Drinfeld (S,H)-modules,
M ⊗S N is a dyslectic Hopf Yetter-Drinfeld (S,H)-module. It follows that, (D ys-SQH ,⊗S,S,γ)
is a braided monoidal category.

For M and N two dyslectic Hopf Yetter-Drinfeld (S,H)-modules, if M is finitely generated
and projective as a right S-module, by [32, Lemma 3.5], HomS(M, N) and SHom(M, N) are
dyslectic Hopf Yetter-Drinfeld (S,H)-modules. Therefore, the functors


HomS(P,•) : D ys-SQH −→ D ys-SQH

•⊗S P : D ys-SQH −→ D ys-SQH
and


SHom(P,•) : D ys-SQH −→ D ys-SQH

P ⊗S • : D ys-SQH −→ D ys-SQH

are two pairs of adjoint functors (where P is finitely generated projective as a right S-
module).

Since the category D ys-SQH is braided, for two dyslectic Hopf Yetter-Drinfeld (S,H)-modules
P and Q, the map

φ : HomS(P,Q)→ SHom(P,Q) by φ( f )(p)= f0( f1 p),

where P is finitetely generated projective as right S-module, is an isomorphism of dyslectic
Hopf Yetter-Drinfeld (S,H)-modules (see [32]).

A dyslectic Hopf Yetter-Drinfeld (S,H)-module algebra is an algebra in the braided monoidal
category D ys-SQH . A dyslectic Hopf Yetter Drinfeld (S,H)-module algebra homomorphism is
a dyslectic Hopf Yetter-Drinfeld (S,H)-module homomorphism which is compatible with the
product and is a unitary algebra homomorphism. By [32, Lemma 4.1 and 4.2], if M is a dyslec-
tic Hopf Yetter-Drinfeld (S,H)-module that is finitely generated projective as a right (left) S-
module, EndS(M) (SEnd(M)) is a dyslectic Hopf Yetter-Drinfeld (S,H)-module algebra.
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Let A be a dyslectic Hopf Yetter-Drinfeld (S,H)-module algebra. The H-opposite algebra
Ā of A ([59, page 100]) is defined as follows: Ā = A as a dyslectic Hopf Yetter-Drinfeld (S,H)-
module, but with multiplication mA ◦γ, where mA is the multiplication of A. In other words,

ā.ā′ = a′
0(a′

1.a), ∀a,a′ ∈ A. (4.1.28)

Note that the action of S on Ā is defined by s.ā = sa, the H-action and the H-coaction are respec-
tively h.ā = h.a and (ā)0 ⊗ (ā)1 = a0 ⊗a1. If the action of H or the coaction of H is trivial, then
Ā = Aop, the opposite algebra of A. Note that S̄ = S: which means that S̄ is H-commutative
(or quantum commutative) as an algebra in the category D ys-SQH .

Lemma 4.1.6. Suppose that A is a dyslectic Hopf Yetter-Drinfeld (S,H)-module algebra. Then

i) Aop is a dyslectic Hopf Yetter-Drinfeld (S,H)-module algebra: the S-action is defined by
s.ao = (s.a)o, the H-action is defined by h.ao = (h.a)o and the H-coaction is defined by

(ao)0 ⊗ (ao)1 = (a0)o ⊗a1

ii) Ā is a dyslectic Hopf Yetter-Drinfeld (S,H)-module algebra (see [32, Lemma 4.3]).

If M is an S-module, we set HomS(M,S) = M∗ the right dual of M. It is a dyslectic Hopf
Yetter-Drinfeld (S,H)-module.

A dyslectic Hopf Yetter-Drinfeld (S,H)-module is right faithfully projective if it is finitely
generated projective as a right S-module and the canonical map

ψ : HomS(P,S)⊗EndS (P) P → S; f ⊗̃p 7→ f (p)

is an isomorphism.

We define in a similar way a left faithfully projective dyslectic Hopf Yetter-Drinfeld (S,H)-
module. A dyslectic Hopf Yetter-Drinfeld (S,H)-module is said to be faithfully projective if it is
right and left faithfully projective.

Since D ys-SQH is a braided monoidal category, by [23], a dyslectic Hopf Yetter-Drinfeld
(S,H)-module is right faithfully projective if and only if it is left faithfully projective. So a
dyslectic Hopf Yetter-Drinfeld (S,H)-module is faithfully projective if it is right faithfully pro-
jective or left faithfully projective.

If A and B are dyslectic Hopf Yetter-Drinfeld (S,H)-module algebras, we define a new
multiplication in A⊗S B by

(A⊗S B)⊗S (A⊗S B)
IA⊗γ⊗IB→ (A⊗S A)⊗S (B⊗S B)

mA⊗mB→ A⊗S B.

In other words,

(a⊗b)(a′⊗b′)= (aa′
0)⊗ (a′

1.b)b′, ∀a,a′ ∈ A and ∀b,b′ ∈ B. (4.1.29)

Brauer groups in some braided monoidal categories C. L. NANGO ©UASZ/UFR-ST/LMA/Hopf Algebra, 2021



CHAPTER 4. ROSENBERG-ZELINSKY EXACT SEQUENCE 108

This new multiplication on A⊗S B is called the braided product. The dyslectic Hopf Yetter-
Drinfeld (S,H)-modules A⊗SB with the braided product is usually denoted A⊗γB. It is denoted
A#γB in [16] and called generalized smash product. We will denote it by A#SB in this paper.
For more details and results about this product, we refer to [32].

Let A be a dyslectic Hopf Yetter-Drinfeld (S,H)-module algebra which is faithfully projec-
tive as an S-module. We define the S-linear maps

F : A#S Ā → EndS(A) given by (a#b̄)(c)= ac0(c1.b)

G : Ā#S A → EndS(A)∼= SEnd(A) given by (ā#b)(c)= a0(a1.c)b,

for all a,b, c ∈ A. According to [32, Proposition 5.1], the maps F and G are dyslectic Hopf Yetter-
Drinfeld (S,H)-module homomorphisms.

Definition 4.1.7. Let A be a dyslectic Hopf Yetter-Drinfeld (S,H)-module algebra which is
faithfully projective as an S-module. We say that A is an Azumaya algebra in the category
D ys-SQH if A is faithfully projective as an S-module, and the S-linear maps F and G are
isomorphisms of dyslectic Hopf Yetter-Drinfeld (S,H)-module algebras.

An Azumaya algebra in D ys-SQH will be called a dyslectic Hopf Yetter-Drinfeld (S,H)-
module Azumaya algebra. If the H-coaction is trivial in Definition 4.1.7, then A is just an
(S,H)-algebra which is faithfully projective as an S-module, such that the natural map A⊗S
Aop → EndS(A) is an isomorphism of (S,H)-algebras and S is commutative. So A is an (S,H)-
Azumaya algebra. In the same way, if the H-action is trivial in Definition 4.1.7, then A is
just an (S,H)-algebra which is faithfully projective as an S-module, such that the natural map
A⊗S Aop → EndS(A) is an isomorphism of (S,H)-Hopf algebras and S is commutative. So A is
an (S,H)-Hopf Azumaya algebra.

4.2 Morita theory for dyslectic Hopf Yetter-Drinfeld
(S,H)-modules

Throughout this section, H is a Hopf algebra with bijective antipode and S is an H-commutative
dyslectic Hopf Yetter-Drinfeld H-module.

Definition 4.2.1. Let A and B be dyslectic Hopf Yetter-Drinfeld (S,H)-module Azumaya al-
gebras. A dyslectic Hopf Yetter-Drinfeld (A-B,H)-bimodule is an object of D ys-SQH which is
an (A-B)-bimodule such that the bimodule map A ⊗S M ⊗S B → M is compatible with the left
H-action and the right H-coaction, that is, for all a ∈ A,b ∈ B,h ∈ H and m ∈ M we have;

h(amb)= (h1.a)(h2m)(h3.b) (4.2.1)

and
(amb)0 ⊗ (amb)1 = (a0m0b0)⊗ (a1m1b1). (4.2.2)
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A dyslectic Hopf Yetter-Drinfeld (S-S,H)-bimodule is just a dyslectic Hopf Yetter-Drinfeld
(S,H)-module. An homomorphism of dyslectic Hopf Yetter-Drinfeld (A-B,H)-bimodule is a
dyslectic Hopf Yetter-Drinfeld (S,H)-module homomorphism which is (A-B)-bilinear (that is,
which is simultaniously left A-linear and right B-linear).

We denote by D ys-AQH
B the category of dyslectic Hopf Yetter-Drinfeld (A-B,H)-bimodule

and dyslectic Hopf Yetter-Drinfeld (A-B,H)-bimodule homomorphisms.

According to [59], a dyslectic Hopf Yetter-Drinfeld (A-B,H)-bimodule is an (A-B)-bimodule
in D ys-SQH . A dyslectic Hopf Yetter-Drinfeld (A-S,H)-bimodule is a left A-module in D ys-SQH .
Similarly, a dyslectic Hopf Yetter-Drinfeld (S-A,H)-module is a right A-module in D ys-SQH .
So a dyslectic Hopf Yetter-Drenfil’d (S-S,H)-bimodule is a left and right S-module in D ys-SQH .

A Hopf Yetter-Drinfel’d (A-S,H)-bimodule will be called left Yetter-Drinfel’d (A,H)-bimodule,
likewise, a Hopf Yetter-Drinfel’d (S-A,H)-bimodule will be called right Yetter-Drinfel’d (A,H)-
bimodule.

Consider two dyslectic Hopf Yetter-Drinfel’d (S,H)-module algebras A and B.

Lemma 4.2.2. Let P be a dyslectic Hopf Yetter-Drinfel’d (A-B,H)-bimodule and Q a dyslectic
Hopf Yetter-Drinfeld (B-A,H)-bimodule. Then

i) P ⊗B Q is a Hopf Yetter-Drinfeld (A-A,H)-bimodule,

ii) Q⊗A P is a Hopf Yetter-Drinfeld (B-B,H)-bimodule,

iii) • if P is a Hopf Yetter-Drinfeld (A-B,H)-bimodule finitely generated projective as a
right B-module, then HomB(P,B) is a Hopf Yetter-Drinfeld (B-A,H)-bimodule.

Moreover, EndB(P) is a dyslectic Hopf Yetter-Drinfeld (S,H)-module algebra.

• if P is a Hopf Yetter-Drinfeld (A-B,H)-bimodule finitely generated projective as a
left A-module, then AHom(P, A) is a Hopf Yetter-Drinfeld (B-A,H)-bimodule.

Moreover, AEnd(P) is a dyslectic Hopf Yetter-Drinfeld (S,H)-module algebra.

iv) • if Q is a Hopf Yetter-Drinfeld (B-A,H)-module finitely generated projective as a
right A-module , then HomA(Q, A) is a Hopf Yetter-Drinfeld (A-B,H)-bimodules.

Moreover, EndA(Q) is a dyslectic Hopf Yetter-Drinfeld (S,H)-module algebra.

• if Q is a Hopf Yetter-Drinfeld (B-A,H)-module finitely generated projective as a left
B-module, then BHom(Q,B) is a Hopf Yetter-Drinfeld (A-B,H)-bimodule.

Moreover, BEnd(Q) is a dyslectic Hopf Yetter-Drinfeld (S,H)-module algebra.

Proof.

i) Let a,a′ ∈ A and p⊗B q ∈ P ⊗B Q,

(aa′)(p⊗B q)= ((aa′)p)⊗B q = (a(a′p))⊗B q = a((a′p)⊗B q)= a(a′(p⊗B q)),
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(p⊗B q)(a′a)= p⊗B (q(a′a))= p⊗B ((qa′)a)= (p⊗B (qa′))a = ((p⊗B q)a′)a,

(a(p⊗B q))a′ = ((ap)⊗B q)a′ = (ap)⊗B (qa′)= a(p⊗B (qa′))= a((p⊗B q)a′)

1A(p⊗B q)= (1A p)⊗B q = p⊗B q and (p⊗B q)1A = p⊗B (q1A)= p⊗B q,

then P ⊗B Q is an (A-A)-bimodule. We have:

(p⊗B q)0 ⊗∆((p⊗B q)1) = (p0 ⊗B q0)⊗∆(q1 p1)
= (p0 ⊗B q0)⊗ (q1 p1)1 ⊗ (q1 p1)2
= (p0 ⊗B q0)⊗ (q11 p11)⊗ (q12 p12)
= (p00 ⊗B q00)⊗ (q01 p01)⊗ (q1 p1)
= (p0 ⊗B q0)0 ⊗ (p0 ⊗B p0)1 ⊗ (q1 p1)
= ρ(p0 ⊗B q0)⊗ (q1 p1)
= ρ((p⊗B q)0)⊗ (p⊗B q)1

(p⊗B q)0 ⊗ε((p⊗B q)1)= (p0 ⊗B q0)ε(q1 p1)= p0ε(p1)⊗B qε(q1)= p⊗B q,

that is P ⊗B Q is a right H-comodule. Let h ∈ H, then:

ρ[h(p⊗B q)] = ρ[(h1 p)⊗B (h2q)]
= [(h1 p)⊗B (h2q)]0 ⊗ [(h1 p)⊗B (h2q)]1
= (h1 p)0 ⊗B (h2q)0 ⊗ (h2q)1(h1 p)1
(4.1.9)= (h12 p0)⊗B (h22q0)⊗ (h23q1S−1

H (h21))(h13 p1S−1
H (h11))

= (h2 p0)⊗B (h5q0)⊗ (h6q1S−1
H (h4))(h3 p1S−1

H (h1))
= (h2 p0)⊗B (h4q0)⊗ (h5q1)(S−1

H (h32)h31 p1S−1
H (h1))

= (h2 p0)⊗B (h4q0)⊗ (h5q1)(ε(h3)1H p1S−1
H (h1))

= (h2ε(h3)p0)⊗B (h4q0)⊗ (h5q1)(1H p1S−1
H (h1))

= (h21ε(h22)p0)⊗B (h3q0)⊗ (h4q1)(1H p1S−1
H (h1))

= (h2 p0)⊗B (h3q0)⊗ (h4q1)(1H p1S−1
H (h1))

= (h21 p0)⊗B (h22q0)⊗ (h3q1)(p1S−1
H (h1))

= h2(p0 ⊗B q0)⊗h3(q1 p1)S−1
H (h1)

= h2(p⊗B q)0 ⊗h3(p⊗B q)1S−1
H (h1)

The relation (4.1.9) is satisfied for P⊗B Q, that is, it is a Hopf Yetter-Drinfel’d H-module.
By [32, Lemma 3.4], P ⊗B Q is an object of D ys-SQH , therefore P ⊗B Q ∈ AQH

A

ii) Same way as the proof of item i).

iii) • Let us consider f ∈ HomB(P,B), a,a′ ∈ A b,b′ ∈ B and p ∈ P. The left B-action and
the right A-action on HomB(P,B) are respectively given by

(bf )(p)= bf (p) and ( f a)(p)= f (ap).

From this we have:

[(bb′) f ](p)= (bb′) f (p)= b[b′ f (p)]= b[(b′ f )(p)]= [b(b′ f )](p) and (1B f )(p)= 1B f (p)= f (p),
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[ f (aa′)](p)= f ((aa′)p)= f (a(a′p))= ( f a)(a′p)= [( f a)a′](p) and ( f 1A)(p)= f (1A p)= f (p).

The compatibility between the left B-action and the right A-action is:

[b( f a)](p)= b( f a)(p)= (bf )(p)a = [(bf )a](p).

Now let s ∈ S and f ∈ HomB(P,B). For p ∈ P, we have:

(s f )(pb)= s f (pb)= s( f (p)b)= (s f (p))b = ((s f )(p))b,

s f is right B-linear that is (s f ) ∈ HomB(P,B) (in other words, we recall that the left
S-action on HomB(P,B) is well-defined). Let h ∈ H, the left H-action on HomB(P,B) is
given by (h. f )= h1[ f (SH(h2)p)]. This action is well-defined since, for all b ∈ B,

(h. f )(pb) = h1[ f (SH(h2)(pb))]
= h1[ f [(SH(h2)1 p)(SH(h2)2.b)]]
= h1[ f [(SH(h22)p)(SH(h21).b)]]
= h1[ f (SH(h3)p)(SH(h2).b)]
= [h11 f (SH(h3)p)][h12(SH(h2).b)]
= [h1 f (SH(h4)p)][h2(SH(h3).b)]
= [h1 f (SH(h3)p)][(h12SH(h22)).b]
= [h1 f (SH(h3)p)][(ε(h2)1H).b]
= [h1 f (SH((ε(h2)h3)p)][1H .b]
= [h1 f (SH(h2)p)]b
= [(h. f )(p)]b

that is, h. f ∈ HomB(P,B). Now let us verify that the right H-coaction on HomB(P,B) is
well-defined:

f0(pb)0 ⊗ f1
(4.1.6)= f ((pb)0)0 ⊗S−1

H ((pb)1) f ((pb)0)1
= f (p0b0)0 ⊗S−1

H (b1 p1) f (p0b0)1
= f (p0)0b00 ⊗S−1

H (p1)S−1
H (b1)b01 f (p0)1

= f (p0)0b0 ⊗S−1
H (p1)S−1

H (b12)b11 f (p0)1
= f (p0)0b0 ⊗S−1

H (p1)ε(b1) f (p0)1
= f (p0)0b0ε(b1)⊗S−1

H (p1) f (p0)1
= f (p0)0b⊗S−1

H (p1) f (p0)1
= f0(p)b⊗ f1.

This means that f0 ∈ HomB(P,B). According to [32, Lemma 2.1 and Lemma 3.5 (i)],
HomB(P,B) is an object of D ys-SQH . We deduce from [32, Lemma 4.1] that EndB(P) is
an algebra in D ys-SQH .

• Let f ∈ AHom(P, A), b ∈ B, a ∈ A and p ∈ P. The left B-action and the right A-
action on AHom(P, A) are respectively given by:

(bf )(p)= f (pb) and ( f a)(p)= f (p)a.
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For all a,a′ ∈ A and b,b′ ∈ B we have:

[(bb′) f ](p)= f [p(bb′)]= f [(pb)b′]= (b′ f )(pb)= [b(b′ f )](p) and (1B f )(p)= f (p1B)= f (p)

[ f (aa′)](p)= f (p)(aa′)= ( f (p)a)a′ = ( f a)(p)a′ = [( f a)a′](p) and ( f 1A)(p)= f (p)1A = f (p)

and
[b( f a)](p)= ( f a)(pb)= f (pb)a = (bf )(p)a = [(bf )a](p),

that is, the left B-action and the right A-action on AHom(P, A) are compatible. Let s ∈ S
and f ∈ AHom(P, A);

(s f )(ap)= f ((ap)s)= f (a(ps))= af (ps)= a(s f )(p),

then s f is left A-linear. For all a ∈ A, h ∈ H, p ∈ P; we have:

(h. f )(ap) (4.1.24)= h2 f (S−1
H (h1)(ap))

= h2 f [(S−1
H (h1)1.a)(S−1

H (h1)2 p)]
= h2 f [(S−1

H (h12).a)(S−1
H (h11)p)]

= h3 f [(S−1
H (h2).a)(S−1

H (h1)p)]
= h3[(S−1

H (h2).a) f (S−1
H (h1)p)]

= [h31(S−1
H (h2).a)][h32 f (S−1

H (h1)p)]
= [(h22S−1

H (h21)).a][h3 f (S−1
H (h1)p)]

= [(ε(h2)1H).a][h3 f (S−1
H (h1)p)]

= a[ε(h2)h3 f (S−1
H (h1)p)]

= a[h2 f (S−1
H (h1)p)]

= a[(h. f )(p)]

Therefore we have h. f ∈ AHom(P, A). Let a ∈ A and p ∈ P we have:

f0(ap)⊗ f1
(4.1.25)= f ((ap)0)0 ⊗ f ((ap)0)1SH((ap)1)
= f (a0 p0)0 ⊗ f (a0 p0)1SH(p1a1)
= a00 f (p0)0 ⊗ f (p0)1a01SH(a1)SH(p1)
= a0 f (p0)0 ⊗ f (p0)1a11SH(a12)SH(p1)
= a0 f (p0)0 ⊗ f (p0)1ε(a1)SH(p1)
= a0ε(a1) f (p0)0 ⊗ f (p0)1SH(p1)
= af0(p)⊗ f1,

so f0 is left A-linear, then the right H-coaction on AHom(P, A) is well-defined. Similarly
way, according to [32, Lemma 2.2 and Lemma 3.5 (ii)], AHom(P, A) is an object of D ys-
SQH . From [32, Lemma 4.2], we deduce that AEnd(P) is an algebra in D ys-SQH

iv) Same way as the proof of item iii).

ä
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Definition 4.2.3. A Hopf Yetter-Drinfeld (A-B,H)-bimodule which is simultaneously faithfully
projective as a left A-module and faithfully projective as a right B-module will be called a
Hopf Yetter-Drinfeld (A-B,H)-bimodule faithfully projective as an (A-B)-bimodule. So a Hopf
Yetter-Drinfeld (S-S,H)-bimodule faithfully projective is just a dyslectic Hopf Yetter-Drinfeld
(S,H)-module faithfully projective.

For the following definition, we refer to [14, page 317] where S = R and to [59]:

Definition 4.2.4. A Morita context in the braided monoidal category (D ys-SQH ,⊗S,S,γ)
is a sextuple (A,B,P,Q, f , g) consisting of algebras A,B ∈ D ys-SQH , an (A-B)-bimodule P ∈
D ys-AQH

B , a (B-A)-bimodule Q ∈ D ys-BQH
A and bilinear morphisms f : P ⊗B Q → A and g :

Q⊗A P → B such that

f (p⊗ q)p′ = pg(q⊗ p′) and g(q⊗ p)q′ = qf (p⊗ q′), ∀p, p′ ∈ P, q, q′ ∈Q.

The Morita context {A,B,P,Q, f , g} is strict, if f and g are isomorphisms in D ys-SQH .

Theorem 4.2.5. Let (A,B,P,Q, f , g) be a strict Morita context in D ys-SQH . Then

i) the functors


P ⊗B • : BQH

S −→ AQH
S

Q⊗A • : AQH
S −→ BQH

S

are inverse equivalences.

ii) the functors


•⊗A P : SQH

A −→ SQH
B

•⊗B Q : SQH
B −→ SQH

A

are inverse equivalences.

iii) If P is faithfully projective as an (A-B)-bimodule and Q faithfully projective as a (B-A)-
bimodule, then the module isomorphisms

HomA(Q, A)← P → BHom(Q,B) and HomB(P,B)←Q → AHom(P, A)

are respectively isomorphisms of dyslectic Hopf Yetter-Drinfeld (A-B,H)-bimodules and
(B-A,H)-bimodules.

iv) If P is faithfully projective as an (A-B)-bimodule and Q faithfully projective as a (B-A)-
bimodule, then the isomorphisms

EndB(P)← A → BEnd(Q) and EndA(Q)← B → AEnd(P)

are isomorphisms of dyslectic Hopf Yetter-Drinfeld (S,H)-module algebras.

Proof.
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i) For all M ∈ AQH
S , (Q⊗A M) ∈ BQH

S , then

P ⊗B (Q⊗A M)∼= (P ⊗B Q)⊗A M ∼= A⊗A M ∼= M = Id
AQH

S
(M)

and for all M ∈ BQH
S , (P ⊗B M) ∈ AQH

S , then

Q⊗A (P ⊗B M)∼= (Q⊗A P)⊗B M ∼= B⊗B M ∼= M = Id
BQH

S
(M).

That is, P ⊗B • and Q⊗A • are inverse each other.

ii) We use the same way as i).

iii) Let us define the maps

φ : P −→ HomA(Q, A) given by φ(p)(q)= f (p⊗ q)

and
φ′ : P −→ BHom(Q,B) given by φ′(p)(q)= g(q⊗ p).

Let us also define the maps

ψ : Q −→ HomB(P,B) given by ψ(q)(p)= g(q⊗ p)

and
ψ′ : Q −→ AHom(P, A) given by ψ′(q)(p)= f (p⊗ q).

Using the dual basis of P and Q, we can prove as in [14, Proposition 1.1.5, item 2.] and
its proof.

iv) Let us consider the well-defined maps

α : A −→ EndB(P); α(a)(p)= ap, α′ : A −→ BEnd(Q); α′(a)(q)= qa

and

β : B −→ EndA(Q); β(b)(q)= bq, β′ : B −→ AEnd(P); β′(b)(p)= bp

We can prove this by using again the dual basis of P and Q as in [14, Proposition 1.1.5,
item 3.] and its proof.

ä

Let us set A#S Ā = A#e and Ā#S A = #e A, where Ā is the H-opposite algebra of A (for more
details and properties, see [32, Section 4]). Since A#e and #e A are algebras in D ys-SQH (cf
[32, Proposition 5.1]), we can consider the category

A#e QH
S of left Hopf Yetter-Drinfeld (A#e ,H)-

modules and the category SQH
#e A

of right Hopf Yetter-Drinfeld (#e A,H)-modules. Clearly, A
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is an object of these two categories: the left A#e -action and the right #e A-action on A are
respectively defined by

(a#b̄).c = ac0(c1.b), (4.2.3)

and
c.(ā#b)= a0(a1.c)b; ∀a,b, c ∈ A. (4.2.4)

If N ∈ D ys-SQH , then the left A#e -module A ⊗S N has a compatible Hopf Yetter-Drinfeld H-
module action, so N 7→ A⊗S N defines a functor

FH : D ys-SQH −→
A#e Q

H
S .

In a similar way, if N ∈ D ys-SQH , then the right #e A-module N ⊗S A has a compatible Hopf
Yetter-Drinfeld H-module action, so N 7→ N ⊗S A defines a functor

F ′
H : D ys-SQH −→ SQH

#e A
.

For the definition of the right adjoint to the functors FH and F ′
H , we refer to [49].

Proposition 4.2.6. Let A be a dyslectic Hopf Yetter-Drinfeld (S,H)-module algebra. Then A is
an Azumaya algebra in D ys-SQH if and only if FH and F ′

H are equivalence functors.

Proof. Let A be a dyslectic Hopf Yetter-Drinfeld (S,H)-module Azumaya algebra. Then
the sextuple (A#e ∼= EndS(A),S, A, A∗, f , g) is a strict Morita context in D ys-SQH . The map
f : A⊗S A∗ → EndS(A) is the canonical map, g : A∗⊗

A#e A →
A#e End(A) is the evaluation map.

It follows from Theorem 4.2.5 that FH is an equivalence functor with inverse A∗⊗
A#e •. We

also have a strict Morita context (#e A ∼=S End(A),S, A, A∗, f ′, g′) in D ys-SQH . It follows from
Theorem 4.2.5 that F ′

H is an equivalence functor with inverse •⊗#e A
A∗.

Assume that FH and F ′
H are equivalence functors. Taking A = S and B = A#e in [48, Theo-

rem 5.1], we get a strict Morita context (A#e ,S,
A#e Hom(A, A#e ), A, f , g) in D ys-SQH . It follows

from Theorem 4.2.5, that A is faithfully projective as an S-module and A#e ∼= EndS(A). Using
the right hand version of [48, Theorem 5.1] with A = S and B = #e A, we get a strict Morita con-
text (#e A,S, A,Hom#e A

(A,#e A), f , g) in D ys-SQH . So A is faithfully projective as an S-module
and #e A ∼= SEnd(A).

ä

4.3 Generalization of the Rosenberg-Zelinsky sequence

In this section, we will present a generalization of Rosenberg-Zelinsky sequence for H-linear,
H-colinear S-algebra automorphisms of dyslectic Hopf Yetter-Drinfeld (S,H)-module Azumaya
algebras. The approach is based that of [39, Section 4.1] and [14, Section 13.6].

Throughout this section, let H be a Hopf algebra with bijective antipode and let S be an
H-commutative dyslectic Hopf Yetter-Drinfeld H-module algebra.
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We can apply the preceding theorem to obtain a generalization of the Rosenberg-Zelinsky
exact sequence, as is done in [39, Section 4.1] and [14, Section 13.6].

If A is an (S,H)-algebra, let H-AutS(A) be the group of all H-linear, H-colinear S-algebra
automorphisms of A. An element α of H-AutS(A) is called H-inner if α(x)= (x1.u)x0u−1 for all
x ∈ A, for some unit u of A. An element α of H-AutS(A) is H-INNER if there is an H-invariant,
H-coinvariant unit u of A for which the inner automorphism arising from u is equal to α (u ∈ A
is H-invariant when H acts trivially on u; i.e. h.u = εH(h)u, for all h ∈ H; u ∈ A is H-coinvariant
when H coacts trivially on u; i.e. u0⊗u1 = u⊗1H .) The subgroup of H-inner (resp., H-INNER)
automorphisms of A will be denoted H-Inn(A) (resp., H-INN(A)). H-INN(A) is a subgroup
of H-Inn(A).

For α, β ∈ H-AutS(A), we denote by αAβ the A-A-bimodule A which acts on left via α and
on right via β. αAβ will be the object of A#e Q

H
S that is, it is equal to A as a Hopf Yetter-Drinfeld

(S,H)-module and has left A#e -action

(a⊗ b̄).c = (α(a)⊗β(b)).c =α(a)β(c0)(c1.b) (4.3.1)

Lemma 4.3.1. If α, β, γ ∈ H-AutS(A), then

1. αAβ
∼= γαAγβ in A#e Q

H
S ;

2. 1 Aα⊗A 1 Aβ
∼= 1 Aαβ in A#e Q

H
S ;

3. 1 Aα
∼= 1 A1 as A#e -modules if and only if α is in H-Inn(A); and

4. 1 Aα
∼= 1 A1 in A#e Q

H
S if and only if α is in H-INN(A).

Proof. See the proof of [14, Theorem 13.6.1] or adapt the proof of [31, Lemma 5.3].

ä

Definition 4.3.2. A dyslectic Hopf Yetter-Drinfel’d (S,H)-module M is called invertible if there
exists another dyslectic Hopf Yetter-Drinfel’d (S,H)-module N such that M⊗̃S N ∼= S as dyslectic
Hopf Yetter-Drinfel’d (S,H)-modules. Isomorphism classes of invertible objects of D ys-SQH

form a group under the tensor product ⊗̃S called the Picard group of dyslectic Hopf Yetter-
Drinfel’d (S,H)-modules and denoted by PQH(S,H).

The isomorphism class in Pic(S) (the group of isomorphism classes of invertible S-modules)
represented by an invertible S-module M will be denoted by [M]. If it exists, the isomorphism
class in PQH(S,H) represented by an object M ∈ D ys-SQH will be denoted by {M}.

Theorem 4.3.3. Let A be a dyslectic Hopf Yetter-Drinfeld (S,H)-module Azumaya algebra.
Then there are exact sequences of groups

1→ H-Inn(A)→ H-AutS(A) Ψ→ Pic(S) (4.3.2)

Brauer groups in some braided monoidal categories C. L. NANGO ©UASZ/UFR-ST/LMA/Hopf Algebra, 2021



CHAPTER 4. ROSENBERG-ZELINSKY EXACT SEQUENCE 117

and
1→ H-INN(A)→ H-AutS(A) Φ→ PQH(S,H). (4.3.3)

The homomorphisms Ψ and Φ are respectively defined by

Ψ(α)= [GH(1 Aα)]

and
Φ(α)= {GH(1 Aα)},

for every α ∈ H-AutS(A), where GH is the inverse of the equivalence functor FH : N → A⊗S N.

Proof. Ψ is simply the restriction of the map

Ψ : AutS(A)→ Pic(S)

used in the original Rosenberg-Zelinsky exact sequence

1→ Inn(A)→AutS(A) Ψ→ Pic(S)

to the subgroup H-AutS(A). So exactness of the first sequence is immediate. For the other
sequence, the fact that Φ is a group homomorphism follows from Lemma 4.3.1 (ii) and the fact
that GH is a functor equivalence. Furthermore, if α ∈ H-AutS(A), we will have GH(1 Aα) ∼= S
if and only if 1 Aα

∼= 1 A1. Therefore, KerΦ = H-INN(A). Exactness of the second sequence
follows.

ä

4.4 A dyslectic (S,H)-dimodule version of the Rosenberg-
Zelinsky exact sequence

In this section, we give a version of the Rozenberg-Zelinsky sequence for dyslectic (S,H)-
dimodules. When H is a commutative and cocommutative Hopf algebra, every Yetter-Drinfel’d
H-module becomes an H-dimodule (see (2.1.9)).

Let M and N be two (S,H)-dimodules (cf. Section 2.2). Set HomS(M, N), the set of right
S-linear maps in SDH and SHom(M, N) the one of left S-linear maps in SDH . Using [33,
Lemmas: 3.2, 3.3 and 3.4]; for an (S,H)-dimodule P wich is finitely generated projective as a
left S-module, the functors

HomS(P,•) : SDH −→ SDH

•⊗S P : SDH −→ SDH
and


SHom(P,•) : SDH −→ SDH

P ⊗S • : SDH −→ SDH
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are two pairs of adjoint functors.

For M and N two dyslectic (S,H)-dimodules (cf. Section 2.3), if M is finitely generated pro-
jective as a right S-module, by [33, Lemma 4.5], HomS(M, N) and SHom(M, N) are dyslectic
(S,H)-modules. Therefore, the functors


HomS(P,•) : D ys-SDH −→ D ys-SDH

•⊗S P : D ys-SDH −→ D ys-SDH
and


SHom(P,•) : D ys-SDH −→ D ys-SDH

P ⊗S • : D ys-SDH −→ D ys-SDH

are two pairs of adjoint functors (where P is finitely generated projective as a right S-
module).

Let A be a dyslectic (S,H)-dimodule Azumaya algebra (cf. Section 2.5). Using the results
of Sections 4.2 and 4.3, we get similar results for dyslectic (S,H)-dimodules. The analogous
equations of (4.2.3), (4.2.4) and (4.3.1) are respectively:

(a#b̄).c = a(b1.c)b0 (4.4.1)

c.(a#b̄)= (c1.a)c0b (4.4.2)

(a⊗ b̄).c = (α(a)⊗β(b)).c =α(a)(b1.c)β(b0) (4.4.3)

The isomorphism class in Pic(S) represented by an invertible S-module M will be denoted
by [[M]]. Let PDH(S,H) be the group of isomorphism classes of dyslectic (S,H)-dimodules
M for which there exists a dyslectic (S,H)-dimodule N for which M ⊗S N ∼= S as dyslectic
(S,H)-dimodules. If it exists, the isomorphism class in PDH(S,H) represented by an object
M ∈ D ys-SDH will be denoted by {{M}}.

Theorem 4.4.1. Let A be a dyslectic (S,H)-dimodule Azumaya algebra. Then there are exact
sequences of groups

1→ H-Inn(A)→ H-AutS(A) Ψ
′

→ Pic(S) (4.4.4)

and
1→ H-INN(A)→ H-AutS(A) Φ

′
→ PDH(S,H). (4.4.5)

The homomorphisms Ψ′ and Φ′ are respectively defined by

Ψ′(α)= [[GH(1 Aα)]]

and
Φ′(α)= {{GH(1 Aα)}},

for every α ∈ H-AutS(A), where GH is the inverse of the equivalence FH : N → A⊗S N.

Proof. The proof of this theorem is similar to the proof of Theorem 4.3.3.
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Conclusion

Dans cette thèse nous avons introduit et défini la notion des (S,H)-dimodules dyslectiques
et défini la catégorie D ys-SDH , dont ils sont les objets. Nous avons défini les algèbres d’Azumaya
de cette catégorie et établi leur groupe de Brauer BD(S,H). Ce groupe généralise celui établi
par Long dans [40]. Nous avons établi une relation d’anti-isomorphisme entre le groupe de
Brauer BD(S,H) et le groupe de Brauer BQ(Sop,H) défini dans [32]. En 1990, Tilborghs
a montré qu’il y a un anti-isomorphism de groupes entre les groupes de Brauer BD(R,H) et
BD(R,H∗) et dans cette thèse, nous avons généralisé son résultat en montrant que BD(S,H)→
BD(Sop,H∗) est un anti-isomorphisme de groupes. La partie 4 de cette thèse généralise aussi
les résultats de Caenepeel, Oystaeyen et Zhang (cf, [17]) et de Caenepeel (cf, [14, Theorem
13.6.1]) sur les suites exactes de Rosenberg-Zelinsky.

Perspectives

Dans un futur immédiat, nous souhaiterons mener nos recherches dans le sens à si on peut
établir un anti-isomorphisme de groupes entre le groupe de Brauer-Clifford-Long BQ(S,H)
des algèbres d’Azumaya des (S,H)-modules de Hopf-Yetter-Drinfeld dyslectiques défini par
Guédénon et Herman dans [32] et le groupe de Brauer-Clifford-Long BQ(Sop,H∗) des algèbres
d’Azumaya des (Sop,H∗)-modules de Hopf-Yetter-Drinfeld dyslectiques où H est une algèbre
de Hopf de dimension finie, H∗ son dual et Sop l’algèbre opposée de l’algèbre de H-module
de Hopf-Yetter-Drinfeld H-commutative S. Ce serait une généralisation du résultat établi par
Nango (voir [46]). Nous voudrions également définir les sous-groupes de Brauer des groupes
de Brauer BQ(S,H) de [32] et BD(S,H) de [33]. Dans la suite nous envisageons de:

X Voir si on pourra définir le Groupe de Brauer-Clifford des algèbres dans la caté-
gorie des A#HC-modules : ici, A est une algèbre de H-module à gauche commuta-
tive et C une algèbre de H-comodule à gauche. On signale que l’algèbre A#HC est une
généralisation de A#H.

X Voir si on pourra définir le Groupe de Brauer-Clifford des algèbres dans la caté-
gorie des A#HC-modules H-localement finis où A est une algèbre de H-module à
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gauche commutative et C une algèbre de H-comodule à gauche.

X Trouver des conditions suffisantes pour la semi-simplicité (ou complète réductibil-
ité) de la catégorie HM H

A des (H-A)-bimodules de Hopf. On en déduira alors la semi-
simplicité de la catégorie HM H

H . Des résultats analogues pour les catégories M H
A , M H

H ,
Y DH

H et L H
H ont déjà été établis.

Plus tard nous souhaiterions orienter nos recherches à l’introduction et à l’étude des notions
de coalgèbres de dimodules de Long, bialgèbre de dimodules de Long, algèbres de Hopf de di-
modules de Long, de H-comodules de Hopf-Yetter-Drinfeld, de coalgèbres (bialgèbres, algèbres
de Hopf) de H-modules de Hopf-Yetter-Drinfeld.
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