Centre de ressources virtuel des Rivières du Sud
  • Accueil
  • Collections
    • Collections de l'UASZ
    • Collections de Casadoc
    • Parcours Thématiques
  • Dépôts
  • En savoir plus
    • À propos
    • Actualités
    • Accueil
    • Collections
      • Collections de l'UASZ
      • Collections de Casadoc
      • Parcours Thématiques
    • Dépôts
    • En savoir plus
      • À propos
      • Actualités
    • Login
    View Item 
    •   DSpace Home
    • Université Assane Seck de Ziguinchor (UASZ)
    • UFR des Sciences et Technologies (ST)
    • Publications enseignants UFR ST
    • View Item
    •   DSpace Home
    • Université Assane Seck de Ziguinchor (UASZ)
    • UFR des Sciences et Technologies (ST)
    • Publications enseignants UFR ST
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsTitlesAuthorsSubjectsBy Issue Datexmlui.ArtifactBrowser.Navigation.browse_territoireThis CollectionTitlesAuthorsSubjectsBy Issue Datexmlui.ArtifactBrowser.Navigation.browse_territoire

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    System for predicting dischearges over the high water period through classification techniques data : case of the Gambia river basin of Mako

    Thumbnail
    View/Open
    15 Faye JFAS.pdf (897.3Kb)
    Date
    2019-05-01
    Author
    Faye, Cheikh
    Metadata
    Show full item record
    Abstract
    This article examines the trend of flow during the high water period (from July till November) in the basin of Gambia measured at the Mako station of over 2004-2013 period. Methodology consisted at first in calculation and in standardization of data by the method of z-score of some statistical parameters (average, maximum, minimum, range and standard deviation). Obtained series were afterward submitted to classifications techniques such as k-means clustering and Agglomerative Hierarchical Clustering (AHC) of Time Series Data Mining to cluster and discover the discharge patterns in terms of the autoregressive model.. From these methods, a forecast model has been developed for the discharge process on average over these years. This study presents basin flow dynamics in high water period from Time Series Data Mining technique. Keywords: data Mining, flow, forecast model, hydrological process, clustering; technics
    URI
    http://rivieresdusud.uasz.sn/xmlui/handle/123456789/327
    Collections
    • Publications enseignants UFR ST

    Ce centre de ressources a été réalisé en partenariat avec et financé par:
    Contact Us | Send Feedback
     

    Ce centre de ressources a été réalisé en partenariat avec et financé par:
    Contact Us | Send Feedback